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Objectives of the Course :  To study about Fuzzy sets and their relations, Fuzzy graphs, 

Fuzzy relations, Fuzzy logic and laws of Fuzzy compositions . 

Course Outline 

 UNIT-I : Fundamental Notions. Chapter I: Sec. 1 to 8  

UNIT-II : Fuzzy Graphs. Chapter II: Sec. 10 to 18  

UNIT-III : Fuzzy Relations. Chapter II: Sec. 19 to 29 

 UNIT-IV: Fuzzy Logic. Chapter III:Sec.31 to 40(omit Sec.37,38, 41)  

UNIT-V: The Laws of Fuzzy Composition. Chapter IV: Sec.43 to 49 

 Recommended Text :  

A.Kaufman, Introduction to the theory of Fuzzy subsets, Vol.I, Academic Press, New 

York, (1975).  

Reference Books : 

1. H.J.Zimmermann, Fuzzy Set Theory and its Applications, Allied Publishers, Chennai, 

(1996) 

 2. George J.Klir and Bo Yuan, Fuzzy sets and Fuzzy Logic-Theory and Applications, 

Prentice Hall India, New Delhi, (2001).  

Course Learning Outcome (for Mapping with POs and PSOs) 

 Students will be able to 

CLO1: Understand the definition of Fuzzy sets and its related concepts 

 CLO2: Define Fuzzy Graphs and can explain the concepts 

 CLO3: Explain the concepts in Fuzzy sets and its relations 

 CLO4: Discuss about Fuzzy logic  

CLO5: Analyze the compositions of Fuzzy sets. 
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UNIT I 

FUNDAMENTAL NOTIONS 

1. INTRODUCTION 

In this first chapter we review the principal definitions and concepts of the theory 

of ordinary sets, that is, those that are at the foundation of present-day mathematics; but 

these definitions and concepts will be reexamined and extended to notations that pertain to 

fuzzy subsets. 

         We shall progress rather slowly so that the reader who is not a mathematician but 

rather a user of mathematics will be able to follow without difficulty. 

        The examples will allow the reader to verify, step by step, whether  the new notions 

have been well understood. But all that is presented in this first chapter is very simple;  the 

difficulties will appear later. 

       The theory of ordinary sets is a particular ease of the theory of fuzzy subsets (we shall 

see presently why it is necessary to say fuzzy subset and not fuzzy set the reference set will 

not be fuzzy). We have here a new and very useful extension; but, as we shall note several 

times, what may be described or explained with the theory of fuzzy subsets may also be 

considered without this theory, using other concepts. One may always replace one 

mathematical concept with another. But will it be so clear or generative of properties that 

are easier to discover and prove, or to use? 

2. REVIEW OF THE NOTION OF MEMBERSHIP 

Let E be a set and A a subset of E 

(2.1) 𝐴 ⊂E 

One usually indicates that an element  𝑥 of E is a member of A using the symbol ∈ 

(2.2)                                  𝑥 ∈ 𝐴 

In order to indicate this membership one may also use another concept, a characteristic 

function 𝜇𝐴(x), whose value indicates (yes or no) whether x is a member of A: 

(2.3)      𝜇𝐴(x) = 1  𝑖𝑓𝑥 ∈ 𝐴 
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= 0 𝑖𝑓   𝑥 ∉ 𝐴. 

Example .  Consider a finite set with five elements: 

(2.4)                  𝐸 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} 

and let 

(2.5)                 𝐴 = {𝑥2, 𝑥3, 𝑥5} 

And one writes  

(2.6)            𝜇𝐴(𝑥1)= 0,   𝜇𝐴(𝑥2)= 1,  𝜇𝐴(𝑥3)= 1,  𝜇𝐴(𝑥4)= 0,  𝜇𝐴(𝑥5)=1. 

This allows us to represent A by accompanying the elements of E with their characteristic 

function values: 

(2.7)    𝐴 = {(𝑥1, 0), (𝑥2, 1), (𝑥3, 1), (𝑥4, 0), (𝑥5, 1)} 

          Recall the well known properties of a Boolean binary algebra:  

          Let 𝐴𝑐 be the complement of A with respect to E: 

(2.8)             𝐴 ∩ 𝐴𝑐 = ∅, 

(2.9)             𝐴 ∪ 𝐴𝑐 = 𝐸. 

(2.10)    If 𝑥 ∈ 𝐴,    𝑥 ∉ 𝐴𝑐, and one writes  

(2.11)        𝜇𝐴(x) = 1 and   𝜇𝐴𝑐(𝑥)= 0 

             Considering the example in (2.6) and (2.7), one sees: 

(2.12)        𝜇𝐴𝑐(𝑥1) = 1, 𝜇𝐴𝑐(𝑥2) = 0, 𝜇𝐴𝑐(𝑥3) = 0, 𝜇𝐴𝑐(𝑥4) = 1, 𝜇𝐴𝑐(𝑥5) = 0, 

And one writes  

(2.13)            𝐴𝑐 = {(𝑥1, 1), (𝑥2, 0), (𝑥3, 0), (𝑥4, 1), (𝑥5, 0)} 

          Given now two subsets A and B, one may consider the intersection 

(2.14)                             𝐴 ∩ 𝐵 

One has  
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(2.15)             𝜇𝐴(x) = 1  𝑖𝑓𝑥 ∈ 𝐴 

                                    = 0 𝑖𝑓   𝑥 ∉ 𝐴. 

(2.16)             𝜇𝐵(x) = 1  𝑖𝑓𝑥 ∈ 𝐵 

                                     = 0 𝑖𝑓   𝑥 ∉ 𝐵. 

(2.17)              𝜇𝐴⋂𝐵(x) = 1  𝑖𝑓𝑥 ∈ 𝐴 ∩ 𝐵 

 = 0  𝑖𝑓   𝑥 ∉ 𝐴 ∩ 𝐵. 

This allows us to write 

(2.18)             𝜇𝐴⋂𝐵(x) =𝜇𝐴(x) .𝜇𝐵(x) , 

Where the operation corresponds to the table in Figure 2.1 and is called the Boolean 

product. 

(.) 0 1 

0 0 0 

1 0 1 

                                                                            FIG. 2.1 

          In the same fashion for the two subsets A and B , one defines the union or join: 

(2.19)         𝜇𝐴∪𝐵(x) = 1  𝑖𝑓𝑥 ∈ 𝐴 ∪ 𝐵 

                = 0  𝑖𝑓   𝑥 ∉ 𝐴 ∪ 𝐵. 

With the property 

(2.20)        𝜇𝐴∪𝐵(x) = 𝜇𝐴(x)+𝜇𝐵(x) 

Where the operation +̇, the Boolean sum, is defined by the table in figure 2.2. 

 

 

 

FIG. 2.2 

(+̇) 0 1 

0 0 1 

1 1 1 
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Example. Consider the reference set (2,4) and the two subsets 

(2.21)            𝐴 = {(𝑥1, 0), (𝑥2, 1), (𝑥3, 1), (𝑥4, 0), (𝑥5, 1)}, 

(2.22)           𝐵 = {(𝑥1, 1), (𝑥2, 0), (𝑥3, 1), (𝑥4, 0), (𝑥5, 1)}, 

One sets 

(2.23)        𝐴 ∩ 𝐵 = {(𝑥1, 0.1), (𝑥2, 1.0), (𝑥3, 1.1), (𝑥4, 0.0), (𝑥5, 1.1)}, 

= {(𝑥1, 0), (𝑥2, 0), (𝑥3, 1), (𝑥4, 0), (𝑥5, 1)} 

(2.24)        𝐴 ∪ 𝐵 = {(𝑥1, 0+̇1), (𝑥2, 1+̇, 0), (𝑥3, 1+̇1), (𝑥4, 0+̇0), (𝑥5, 1+̇1)}, 

= {(𝑥1, 1), (𝑥2, 1), (𝑥3, 1), (𝑥4, 0), (𝑥5, 1)}, 

      To continue,  emanating from these two subsets one has  

(2.25)        𝐴 ∩ 𝐵 ̅̅ ̅̅ ̅̅ ̅̅ ={(𝑥1, 1), (𝑥2, 1), (𝑥3, 0), (𝑥4, 1), (𝑥5, 0)}, 

(2.26)         𝐴 ∪ 𝐵 ̅̅ ̅̅ ̅̅ ̅̅ ={(𝑥1, 0), (𝑥2, 0), (𝑥3, 0), (𝑥4, 1), (𝑥5, 0)}, 

These few exercise constitute only a didactic preamble to an understanding of fuzzy 

subsets. 

                     3. THE CONCEPT OF A FUZZY SUBSET 

We shall begin with an example. Consider the subset A of E defined by (2.7) The 

five elements of E belong or do not belong to A, one or the other. The characteristic 

function takes only the values 0 or 1. 

Imagine now that this characteristic function may take any value whatsoever in the 

interval [ 0, 1].   Thus, an element 𝑥𝑖 of E may not be a member of A(𝜇𝐴= 0) could be a 

member of A a little ( 𝜇𝐴near 0), may more or less be a member of A ( 𝜇𝐴 neither too near 

0 nor too near 1), could be strongly a member of A ( 𝜇𝐴near 1 ), or finally might be a 

member of A(𝜇𝐴 = 1).  In this manner the notion of membership takes on an interesting 

extension and leads, as we shall see, to very useful developments. 

The mathematical concept is defined by the expression 

(3.1)   ~
𝐴 = {(𝑥1|0.2), (𝑥2|0), (𝑥3|0.3), (𝑥4|1), (𝑥5|0.8)} 
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Where 𝑥𝑖 is an element of the reference set E and where the number placed after the bart is 

the value of the characteristic function for the element; this mathematical concept will be 

called a fuzzy subset of E and be denoted 

(3.2)  ~
𝐴 ⊂ 𝐸  

One may denote membership in a fuzzy subset by 

(3.3)  𝑥  ~
𝐴

0.2

∈
,        𝑦    ~

𝐴           ,1
∈   𝑧    ~

𝐴       ,0
∈  

The symbol    1
∈      may be taken to be equivalent to ∈, and    0

∈   to   ∉. In order to avoid 

encumbering the notation, one uses simply ∈ to indicate membership and   ∉ , nonmem- 

bership. 

Thus, the fuzzy subset defined by (3, 1) contains a little𝑥1 does not contain 𝑥2 . 

contains a little more 𝑥3 ,contains 𝑥4 completely, and a large part of 𝑥5 This will allow us 

to construct a mathematical structure with which one may be able to manipulate con- cepts 

that are rather poorly defined but for which membership in a subset is somewhat 

hierarchical. Thus, one may consider: in the set of men, the fuzzy subset of very tall men; 

in the set of basic colors, the fuzzy subset of deep green colors; in the set of decisions, a 

fuzzy subset of good decisions and so forth. We shall go on to see how to manipulate these 

concepts that seem particularly well adapted to the imprecision prevalent in the social 

sciences. 

 Let E be a set, denumerable or not, and let x be an element of E.  Then a fuzzy 

subset  ~
𝐴 of E is a set of ordered pairs 

{(𝑥, 𝜇𝐴
~
(𝑥))} ∀ 𝑥 ∈ 𝐸.  

where 𝜇𝐴
~
(𝑥) is a membership characteristic function that takes its values in a totally 

ordered set M, and which indicates the degree or level or membership.  M will be called a 

membership set. 

A vertical bar has been used in place of a comma, as in (2.7), in order to avoid confusion. 

When one is using the American decimal point, a comma may, of course, be used in place 

of the bar. 
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 We have, however, adapted this definition to the terminology and presentation of the 

present work. 

 A set or a subset is denoted in the present work by a boldface letter: A, X, a, p, 

…….  A fuzzy subset will be designated by a boldface letter under which is placed the 

symbol ~. 

Thus  

 ,    ~
 𝐴  ,    ~

𝑋  ,    ~
𝑎     ~

 𝑝  

represent fuzzy subsets. When all the subsets turn out to be ordinary, one may, if it is 

useful, suppress the small supplementary symbol ~ . 

        Membership and nonmembership will be indicated by 

(3.8)                       ∈   and  ∉ ; 

fuzzy membership and fuzzy nonmembership will be represented by 

(3.9)                  ,    ~
 ∈  ,    ~

∉  if this is necessary. 

In certain cases where the totally ordered set M, in which μA(x) takes its values, is the 

doubly closed interval [0, 1], it may be convenient to accompany the symbol E by a 

number from [0, 1] placed beneath it. Thus 

(3.10)         x    ~
𝐴     ,1

∈   indicates x 𝜖 A, that is, "x is a member of A," 

  x    ~
𝐴     ,0

∈  indicates x ∉ A, that is, "x is not a member of A,"  

  x    ~
𝐴     ,0.8

∈  indicates that x is a member of A with degree 0,8, 

and so forth. The next examples will be very useful. 

Example 1. Consider a finite set: 

(3.11)                                 E= {a, b, c, d, e, f} 

and the finite ordered set 

                                        M=(0, 1/2, 1). 

(3.12)  
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        Then 

(3.13)                                     ~
𝐴  = ((a|0), (b|1), (c|

1

2
). (d|0), (e|

1

2
),(f|0)) 

is a fuzzy subset of E and one may write 

𝑎    ~
𝐴     ,0

∈   b    ~
𝐴     , c    ~

𝐴     ,1/2
∈  1

∈   d    ~
𝐴     ,0

∈ 𝑒𝑡𝑐. 

Example 2. Let N be the set of natural numbers: 

 (3.14)                                N=(0,1,2,3,4,5,6,...) 

and consider the fuzzy subset  ~
𝐴  of "small" natural numbers: 

(3.15)   ~
𝐴 = ((0|1), (1|0,8), (2|0,6), (3|0,4), (4|0,2), (5|0), (6|0)..... 

Here, of course, the functional values µA(x), where x = 0, 1, 2, 3,..., have been given 

subjectively. One may write 

(3.16)   0    ~
𝐴     ,1

∈ 1    ~
𝐴     ,20.8

∈ . 6   ~
𝐴     ,0

∈ 3    ~
𝐴     ,0.4

∈ …………… .. 

Example 3. Let E be the finite set of the first ten integers: 

(3.17)                               E=(0,1,2,3,4,5,6,7,8,9) 

and consider the fuzzy subset  ~
𝐴  containing the numbers of E in the following fashion: 

                        ~
𝐴 ={(0|0), (1|0,2), (2|0,3), (3|0), (4|1). 

(3.18)                                                            (5|1). (6|0,8). (7|0,5), (8|0), (9|0)), 

where again the µ  ~
𝐴 (x) are subjective. 

One may write 

(3.19) )   0    ~
𝐴     ,0

∈ 1    ~
𝐴     ,20.2

∈ . 3   ~
𝐴     ,0

∈ 3    ~
𝐴     ,0

∈ …………… .. 

          The reader will note that this symbol of generalized membership may be employed 

in the opposite sense. Thus, for (3.13) one may write 

(3.20)  ~
𝐴 𝑎0
∋ ,  ~

𝐴 𝑏1
∋ ,     ~

𝐴  𝑐0.5
∋ .   

and for (3.19), 

(3.21)  ~
𝐴 00
∋ ,  ~

𝐴  10.2
∋ ,     ~

𝐴  20.3
∋ .   
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4. DOMINANCE RELATIONS 

Recall first the nature of a dominance relation existing between two ordered n-tuples. 

Consider the two ordered n-tuples. 

(4.1)                          v = {k1 ,k2 , . . . . , kn} 

And 

(4.2)                           v' = {k’1 ,k’2 , . . . . , k’n} 

in which the ki and the k’i ,i = 1, 2,..., n, belong to the same totally ordered set K, in which 

the relation of order will be represented by the symbol >. 

We shall say that v' dominates r, which is written 

(4.3)                          v’ ≥ r. 

if and only if 

(4,4)                     𝑘1
′ > 𝑘1,  𝑘2

′ > 𝑘2, …………………𝑘𝑛
′ > 𝑘𝑛, 

The symbols ≥ and >for the order relation correspond to a nonstrict order relation. If we 

then use the symbols > and ⊱ corresponding to a strict order relation, we say that v'strictly 

dominates v. One may then see that 

(4.5)                                        𝑣′ ⊱ 𝑣 

if and only if   

(4.6)               𝑘1
′ > 𝑘1,  𝑘2

′ > 𝑘2, …………………𝑘𝑛
′ > 𝑘𝑛, 

with atleast one   𝑘𝑖
′ and one 𝑘𝑖 between which there exist a strict relation. 

 Granting what has been developed here, one may then say that all dominance 

relations introduce an order relationship (total or  partial) between n-tubles such as v and 

𝑣′. 

Example 1. Consider the four tuples 

(4.7)         𝑢 = (7,3,0,5), 

(4.8)          𝑣 = (2,2,0,4), 

(4.9)          𝑤 = (3,4,1,4), 
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One sees that 

(4.10)        𝑢 > 𝑣  since 7 > 2, 3 > 2, 0 = 0, 5 > 4, 

Since one of the terms of u, atleast, is greater than the corresponding term of v, one may 

likewise write 𝑢 > 𝑣. In the same manner one may verify that 𝑤 > 𝑣. But u and w are not 

comparable. In fact, 

(4.11)       7 > 3, 3 < 4, 0 < 1, 5 > 4. 

Example 2.  

 

Figure 4.1 

Consider the set P of points (𝑥1, 𝑥2) in the plane indicated in Figure 4.1 and defined 

by   𝑥1 ≥ 0 and 𝑥2 ≥ 0.   All points of the shaded domain II, that is, those with 𝑥1 ≥ 𝑎, 

𝑥2 ≥ 𝑏, dominate and in fact strictly dominate all points of domain I, 0 ≤ 𝑥2 < 𝑎,  0 ≤

𝑥2 < 𝑏. All points of domain III are not necessarily comparable with all points of 𝐼𝑉 on the 

one hand with I and II  on the other. Finally, each point of III is not comparable to a point 

of IV and vice versa, evidently, except those points such that 𝑥1 = 𝑎 or 𝑥2 = 𝑏. 

5.SIMPLE OPERATIONS ON FUZZY SUBSETS 

Inclusion. Let E be a set and M its associated membership set, and let  ~
𝐴  and  ~

𝐵  be two 

fuzzy subsets of E; we say that  ~
𝐴  is included in   ~

𝐵 if  

(5.1)          ∀ 𝑥𝜖𝐸     :𝜇  ~
𝐴 (𝑥) ≤ 𝜇  ~

𝐵 (𝑥) 

     This will be denoted by  

(5.2)                ~
𝐴 ⊂  ~

𝐵  

 And, if necessary to avoid confusion, 

(5.3)      ~
𝐴  ~
⊂  ~
𝐵  
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which says very precisely that it is a case of inclusion in the sense of the theory of fuzzy 

subsets. 

 Strict inclusion, corresponding to the case where at least one relation in (5.1) is strict, will 

be denoted 

(5.4)               ~
𝐴 ⊂⊂  ~

𝐵   or  ~
𝐴  ~
⊂  ~
⊂  ~
𝐵  

 We will consider three examples  

(1) Let  

(5.5)      𝐸 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}, 𝑀 = [0,1] 

(5.6)     ~
𝐴  = {(𝑥1|0.4), (𝑥2|0.2), (𝑥3|0), (𝑥4|1)},  

(5.7)      ~
𝐵   = {(𝑥1|0.3), (𝑥2|0), (𝑥3|0), (𝑥4|0)}, 

One has  

(5.8)    ~
𝐵 ⊂  ~

𝐴 since 0.3 < 0.4, 0 < 0.2, 0 = 0, 0 < 1 

(2) Let  

(5.9)            ~
𝐴 ⊂ 𝐸 , ⊂ 𝐸 ~

𝐵 𝑀 = [0,1] 

If 

(5.10)      ∀𝑥 ∈ 𝐸 ∶ 𝜇
 ~

𝐴
2 (x) = 𝜇  ~

𝐵 (x) 

Then  

(5.11)   ~
𝐵 ⊂  ~

𝐴  

(3) Let  

  𝐸 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5}, 𝑀 = [0,1] 

One can write  

(5.12)                𝐸 = {(𝑥1, 1), (𝑥2, 1), (𝑥3, 1), (𝑥4, 1), (𝑥5, 1)} 

Thus E is also included in itself in the sense of the theory of fuzzy subsets: 
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(5.13)   𝐸  ~ 
⊂  E 

And this property remains true whatever the set E may be. 

Equality. Let E be a set and M its associated membership set, and let  and  be two 

fuzzy subsets of E; we say that  ~
𝐴   and   ~

𝐵  are equal if and only if  

(5.14)   ∀𝑥 ∈ 𝐸; 𝜇  ~
𝐴 (x) = 𝜇  ~

𝐵 (x) 

This will be denoted by 

(5.15)   ~
𝐴 =  ~

𝐵  

If  at least one of x of E is such that the equality  is  not satisfied , we say that  and    

are not equal, and this will be denoted 

(5.16)     ~
𝐴 ≠  ~

𝐵  

Complementation.    Let E be a set and𝑀 = [0,1]  its associated membership set and 

let  ~
𝐴   and   ~

𝐵   be two fuzzy subsets of E; we say that   ~
𝐴    and  ~

𝐵    are complementary if 

(5.17)   ∀𝑥 ∈ 𝐸; 𝜇  ~
𝐵 (x) = 1 - 𝜇  ~

𝐴 (x) 

This will be denoted  

(5.18)        ~
𝐵 =  

 ~
𝐴
−        or    

 ~
𝐴
− =   ~

𝐵  

One obviously  always has  

(5.19)               (  
 ~

𝐴
− ) =  ~

𝐴  

         We note that here complementation is defined for 𝑀 = [0,1], but one may extend 

this to other ordered membership sets M using other appropriate definitions. 

        We consider an example 

(5.20)             𝐸 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6}, 𝑀 = [0,1]. 

(5.21)  ~
𝐴 = {(𝑥1, |0.13), (𝑥2, |0.61), (𝑥3, |0), (𝑥4, |0)(𝑥5, |1), (𝑥6, |0.03)} 

 ~
𝐵 = {(𝑥1, |0.87), (𝑥2, |0.39), (𝑥3, |1), (𝑥4, |1)(𝑥5, |0), (𝑥6, |0.97)}. 

  Then certainly 

(5.22)                     
 ~

𝐴
− =  ~

𝐵  

Intersection. Let E be a set and 𝑀 = [0,1] its associated membership set, and let 

 ~
𝐴  𝑎𝑛𝑑  ~

𝐵 be two fuzzy subsets  of E ; one defines the intersection 
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(5.23)   ∩   ~
𝐵

~
𝐴  

as the largest fuzzy subset contained at the same time in A and B. That is, 

(5.24)                ∀ x ϵE :𝜇   ∩  ~
𝐵

~
𝐴 (x) = MIN (𝜇  ~

𝐴 (x) , 𝜇  ~
𝐵 (x)) 

Example 

(5.25)                E = {x1 , x2 , x3 ,x4 , x5} , M = |0 , 1| 

(5.26)   ~
𝐴  = { (x1 | 0.2), (x2 | 0.7),(x3 |1), (x4 |0), (x5 |0.5) }. 

(5.27)          ~
𝐵  = { (x1 | 0.5), (x2 | 0.3),(x3 |1), (x4 |0.1), (x5 |0.5) }. 

(5.28)      ∩   ~
𝐵

~
𝐴 = { (x1 | 0.2), (x2 | 0.3),(x3 |1), (x4 |0), (x5 |0.5) }. 

Referring to the general definition (5.23) and (5.24), one may, moreover, write 

(5.29)              ∀  x ∈E : x  𝜇
 ~

𝐴
∈ A  and   x  𝜇

 ~
𝐵
∈ B  - x   𝜇

  ∩  ~
𝐵

~
𝐴

∈   ∩  ~
𝐵

~
𝐴  

This permits us to introduce a fuzzy and to be symbolized and. 

          Thus one may say: If  ~
𝐴  is the fuzzy subset of real numbers very near 5 and  ~

𝐵  the 

fuzzy subset of real numbers very near 10, then   ∩   ~
𝐵

~
𝐴  is the fuzzy subset of real numbers 

very near to 5 and to 10. The fuzzy conjunction and is pronounced as and, but except 

where necessary, one may omit placing ~ beneath it. 

Union. Let E be a set and M [0, 1] its associated membership set, and let  ~
𝐴 and  ~

𝐵  be two 

fuzzy subsets of E; we define the union. 

(5.30)                          ∪   ~
𝐵

~
𝐴  

as the smallest fuzzy subset that contains both  ~
𝐴  and  ~

𝑩 . That is, 

(5.31)                       ∀ x ∈E :  
 ∪  ~
𝐵

~
𝐴

𝜇
(x) = MAX (𝜇  ~

𝐴 (x) , 𝜇  ~
𝐵  (x)) 

Recalling the example presented in (5.25)-(5.27), one sees 

(5.32)                  ∪  ~
𝐵

~
𝐴  = { (x1 | 0.5), (x2 | 0.7),(x3 |1), (x4 |0), (x5 |0.5) }. 

And recalling the general definitions (5,30), (5.31), one may, moreover, write 
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(5.33)                 ∀  x ∈E : x  𝜇
 ~

𝐴
∈ A or/and   x  𝜇

 ~
𝐵
∈ B  - x   𝜇

 ∪  ~
𝐵

~
𝐴

∈  ∪   ~
𝐵

~
𝐴  

                  This allows us to introduce a fuzzy or/and, to be symbolized or/and. Except 

where necessary, one omits the symbol ~. 

          Thus one may say: If   ~
𝐴  is the fuzzy subset of real numbers very near 5 and  ~

𝐵  the 

fuzzy subset of real numbers very near 10, then  ∪   ~
𝐵

~
𝐴  is the fuzzy subset of real numbers 

very near to 5 or/and to 10. The conjunction or/and is pronounced as or / and. 

Remark. When there is no possibility of error in interpretation, one will write "and" for 

"and," and in the same manner "or/and" for "or/and". 

Disjunctive sum. The disjunctive sum of two fuzzy subsets is defined in terms of unions 

and intersections in the following fashion: 

(5.34)        ~
𝐴 ⨁  ~

𝐵 = (  ~
𝐴 ∩   ~𝐵

− ) ∪ ( ∩  ~
𝐵

 ~
𝐴
− ) 

This operation corresponds to "fuzzy disjunctive or," where "or" is read "or" and will be 

written "or" when there is no risk of error. 

            We consider an example (the example that has served for union and intersection). 

(5.35)           ~
𝐴  = { (x1 | 0.2), (x2 | 0.7),(x3 |1), (x4 |0), (x5 |0.5) }. 

 (5.36)           ~
𝑩  = { (x1 | 0.5), (x2 | 0.3),(x3 |1), (x4 |0.1), (x5 |0.5) }. 

(5.37)      
 ~

𝐴
−  = { (x1 | 0.8), (x2 | 0.3),(x3 |0), (x4 |0.1), (x5 |0.5) }. 

(5.38)              ~𝐵
−  = { (x1 | 0.5), (x2 | 0.7),(x3 |0), (x4 |0.9), (x5 |0.5) }. 

(5.39)      ~
𝐴 ∩   ~𝐵

−  = { (x1 | 0.2), (x2 | 0.7),(x3 |0), (x4 |0), (x5 |0.5) }. 

(5.40)    ∩  ~
𝐵

 ~
𝐴
−  = { (x1 | 0.5), (x2 | 0.3),(x3 |0), (x4 |0.1), (x5 |0.5) }. 

(5.41)       ~
𝐴 ⨁  ~

𝐵  = { (x1 | 0.5), (x2 | 0.7),(x3 |0), (x4 |1), (x5 |0.5) }. 

Difference. The difference is defined by the relation 

(5.42)                        ~
𝐴  –  ~

𝐵  =  ~
𝐴 ∩   ~𝐵

−  

Considering again the example (5.26) and (5.27), and using (5.38) and (5.39), (5.43)        

 ~
𝐴 ∩   ~𝐵

− = { (x1 | 0.2), (x2 | 0.7),(x3 |0), (x4 |0), (x5 |0.5) }. 

Of course, except in particular cases, 
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(5.44)           ~
𝐴  –  ~

𝐵  ≠  ~
𝐵  –  ~

𝐴  

Visual representation of simple operations on fuzzy subsets. For fuzzy subsets, one may 

construct a visual representation allied with that for ordinary subsets (Venn-Euler 

diagrams). 

 

Consider a rectangle (Figure 5.1) with the values of𝜇𝐴 (x) as ordinate and as an abscissa 

the elements of E in an arbitrary order (if there is in the nature of E a total order, that order 

will be taken). In Figure 5.1     the membership of each element is represented by its 

ordinate. The shaded part conveniently represents the fuzzy subset  ~
𝐴 ⊂ E. 

With this representation we see how to visualize the various simple operations on fuzzy 

subsets. A series of figures will show how to use this representation.   

In Figures 5.2-c the property of inclusion is presented. Figures 5.3a-c illustrate 

complementation. The properties of union and intersection are shown in Figures 5.42-d. 

 

This represents the fuzzy subset  ~
𝐴  and contains all the fuzzy  subsets that are included in 

 ~
𝐴 . These shadings are convenient for distinguishing one fuzzy subset from another. 

In Figures 5.5a-g are represented the properties of the difference  ~
𝐴  –  ~

𝐵  =  ~
𝐴 ∩   ~𝐵

− and the 

disjunctive sum  ~
𝐴 ⨁  ~

𝐵 = (  ~
𝐴 ∩   ~𝐵

− ) ∪ ( ∩  ~
𝐵

 ~
𝐴
− ). 



16 
 

 

 

Hamming distance. We recall first what is meant by Hamming distance in the theory of 

ordinary subsets. Consider two ordinary subsets A ⊂ E, B ⊂ E. E finite. 

 

The Hamming distance between A and B is the quantity 

(5.47)    d(A,B) = ∑ (𝜇𝐴 
𝑛
𝑖=1 (x i) – μ B(x i)) 

For the example in (5.45) and (5,46), one  has 
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d(A, B)  = |1 - 0| + |0 - 1| + |0 - 0| + |1 - 0| + |0 - 0| +|1 – 1| + |0 - 1| 

(5.48)     = 1+1+0+1+0+0+1 = 4. 

The reader knows that the word distance may not be used arbitrarily in mathematics. If X 

and Y are two elements between which one wishes to define a distance, it is necessary. you 

will recall, that one have, for some operation.: 

 ∀ X,Y,Z∈ E: 

(5.49)                    1)    d(X, Y)> 0.Nonnegativity 

(5.50)                         2) d(X, Y) = d(Y, X), symmetry 

(5.51)                        3) d(x, z) <  d(X, Y). d(Y, Z). 

transitivity for the operation associated with the notion of distance. 

   To these three conditions, one may add a fourth: 

(15.52)                        4) d(X, X)= 0. 

       One may easily verify that a lamming distance is indeed a distance in the sense given 

by (5.49)-(5.52) with the operation+ (ordinary sum). 

       We define also, for a finite E with n card E-4the number of elements in E), a relative 

lamming distance: 

(5.53)                          𝛿 (𝐴 , 𝐵) = 
1

𝑛
d(A , B) 

For the example in (5.45) and (5,46), one has 

𝛿 (𝐴 , 𝐵)  = 
𝑑 (𝐴 ,𝐵)

7
  =  

4

7
 

One has always 

(5.54)                          0<𝛿 (𝐴 , 𝐵)< 1. 

With a view toward generalizing the notion of Hamming distance to the case where one 

considers fuzzy subsets and not only ordinary subsets, we state two theorems. 

Theorem I.  Let pi ,mi, ni ϵ R* , i = 1 , 2, … , k; then 

(5.55) (𝑝𝑖 < 𝑚𝑖 + 𝑛𝑖 .    𝑖 = (1,2,……… . 𝑘) )          ∑ 𝑝𝑖
𝑘
𝑖=1 <∑ 𝑚𝑖

𝑘
𝑖=1  + ∑ 𝑛𝑖

𝑘
𝑖=1  
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Proof. This result is immediate upon forming the sums from: 1 to k on the left and right 

sides of the inequality. 

Theorem II.  Let pi ,mi, ni ϵ R* , i = 1 , 2, … , k; then 

(5.56)     (𝑝𝑖 < 𝑚𝑖 + 𝑛𝑖 .    𝑖 = (1,2,……… . 𝑘) )    √∑ 𝑝𝑖
2𝑘

𝑖=1 <√∑ 𝑚𝑖
2𝑘

𝑖=1  + √∑ 𝑛𝑖
2𝑘

𝑖=1  

Proof. This result is less immediate. 

One may give another proof based on the theory of complex numbers; we have preferred a 

direct presentation. 

We treat the evident inequality 

(5.57)                      ∑ (𝑚𝑖𝑛𝑖 −𝑚𝑖𝑛𝑖 )
2𝑘

𝑖=1 >  0 

Developing this sum of squares, we have 

(5.58)                        ∑ 𝑚𝑖
2𝑘  

𝑖=1 𝑛𝑖
2 - 2∑ 𝑚𝑖 

𝑘
𝑖=1 𝑛𝑖  𝑚𝑗 𝑛𝑗 > 0. 

That is,          

(5.59)                       ∑ 𝑚𝑖
2𝑘  

𝑖=1 𝑛𝑖
2> 2 ∑ 𝑚𝑖 

𝑘
𝑖=1 𝑛𝑖  𝑚𝑗 𝑛𝑗  

Adding   ∑ 𝑚𝑖
2𝑘  

𝑖=1 𝑛𝑖
2 to the two members of this inequality, 

(5.60)                   ∑ 𝑚𝑖
2𝑘  

𝑖=1 𝑛𝑖
2 +   ∑ 𝑚𝑖

2𝑘  
𝑖=1 𝑛𝑖

2>∑ 𝑚𝑖
2𝑘  

𝑖=1 𝑛𝑖
2 + ∑ 2𝑚𝑖 

𝑘
𝑖=1 𝑛𝑖  𝑚𝑗 𝑛𝑗  

which may be rewritten  

(5.61)              ( ∑ 𝑚𝑖
2𝑘  

𝑖=1 ) ( ∑ 𝑛𝑖
2𝑘  

𝑖=1 ) >(∑ 𝑚𝑖 𝑛𝑖
𝑘
𝑖=1 )2 

(562)               √∑ 𝑚𝑖
2𝑘

𝑖=1 √∑ 𝑛𝑖
2𝑘

𝑖=1 >∑ 𝑚𝑖 𝑛𝑖
𝑘
𝑖=1  

(5.63)       2  √∑ 𝑚𝑖
2𝑘

𝑖=1 √∑ 𝑛𝑖
2𝑘

𝑖=1 > 2  ∑ 𝑚𝑖 𝑛𝑖
𝑘
𝑖=1  

Adding,  ∑ 𝑚𝑖
2𝑘

𝑖=1 + ∑ 𝑛𝑖
2𝑘

𝑖=1 one has 

(5.64)   ∑ 𝑚𝑖
2𝑘

𝑖=1 + ∑ 𝑛𝑖
2𝑘

𝑖=1 +  2√∑ 𝑚𝑖
2𝑘

𝑖=1 √∑ 𝑛𝑖
2𝑘

𝑖=1 >∑ 𝑚𝑖
2𝑘

𝑖=1 + ∑ 𝑛𝑖
2𝑘

𝑖=1  + 2  ∑ 𝑚𝑖 𝑛𝑖
𝑘
𝑖=1  

which may be rewritten 

(5.65)   (√∑ 𝑚𝑖
2𝑘

𝑖=1  +  √∑ 𝑛𝑖
2𝑘

𝑖=1 )2 > ∑ (𝑚𝑖 + 𝑛𝑖)
2𝑘

𝑖=1  

(5.66)     √∑ 𝑚𝑖
2𝑘

𝑖=1  +  √∑ 𝑛𝑖
2𝑘

𝑖=1 >√∑ (𝑚𝑖 + 𝑛𝑖)2
𝑘
𝑖=1  

But, by hypothesis, 
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 (5.67)          Ɐ𝑖=1,2,…….k:     𝑚𝑖 + 𝑛𝑖 > 𝑝𝑖 .  

And then 

(5.68)    √∑ 𝑚𝑖
2𝑘

𝑖=1  +  √∑ 𝑛𝑖
2𝑘

𝑖=1 > √∑ 𝑝𝑖
2𝑘

𝑖=1  

Generalization of the notion of Hamming distance. Consider now three fuzzy sub- sets 

 ,  ~
𝐵  ,  ~

𝐶 ⊂ ~
𝐴  E, E finite, card E=n: 

 

 

Suppose that one has defined a distance, denoted  𝜔(ai,bi), between ai and bi for all i= 1, 

2,...,n, and that the same holds for (bi , ci) and for (ai, ci). One must then have, since it is a 

distance according to (5.49)-(5.52). 

(5.72) ∀  = 1,2,3 …. n𝜔(ai,ci) <𝜔(ai,bi) = 𝜔(bi,ci) 

And, according to Theorems I (5.55) and 11 (5.56), one may write 

(5.73)               ∑ 𝜔(ai , ci) 𝑛
𝑖=1 <∑ 𝜔(ai , bi) 𝑛

𝑖=1  + ∑ 𝜔(bi , ci) 𝑛
𝑖=1  

(5.74)               √∑ 𝜔2(𝑎𝑖 ,𝑐𝑖)
𝑛
𝑖=1 <√∑ 𝜔2(𝑎𝑖 ,𝑏𝑖)

𝑛
𝑖=1   + √∑ 𝜔2(𝑏𝑖 ,𝑐𝑖)

𝑛
𝑖=1  

These two formulas give two evaluations of the distance between fuzzy subsets, one linear 

and the other quadratic. 

Now we consider the case where, in fuzzy subsets, the membership function takes its 

values in M = [0 ,1] that is, where one has in (5.69)-(5.71), ai , bi , ci ⊂  [0 ,1] ,i = 1, 2,...,n. 

Now take 

(5.75)  𝜔(ai,bi) = |ai - bi| , 𝜔(bi,ci) = |bi - ci| , 𝜔(ai,ci) = |ai - ci| 

The notion of distance has been the subject of a number of works. We present here two 

notions among those used most often. Of course, one may define other notions of distance 

for fuzzy subsets and we define two types of distance corresponding to (5.73) and (5.74): 
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Generalized Hamming distance or linear distance. This will be defined by 

(5.76)          d(  ~
𝐴  ,  ~

𝐵 , B)=   ∑ |𝜇  ~
𝐴 (𝑥𝑖) − 𝜇  ~

𝐵 (𝑥𝑖)(𝑥𝑖) |
𝑛
𝑖=1  

This generalizes (5.47) to the case where 

(5.76a)            𝜇  ~
𝐴 (𝑥𝑖) , 𝜇  ~

𝑩 (𝑥𝑖) ∈ [0 , 1] , i = 1 , 2,…. n . 

And one has 

 (5.77)                                 0<d(  ~
𝐴 ,  ~

𝐵 ) < n 

Euclidean distance or quadratic distance. This will be defined by 

(5.78)  e(  ~
𝐴  ,  ~

𝑩 ) = √∑ (𝜇  ~
𝐴 (𝑥𝑖) − 𝜇  ~

𝐵 (𝑥𝑖) )2
𝑛
𝑖=1  

One has 

(5.79)                             0 <  e (  ~
𝐴  ,  ~

𝐵 ) <√𝑛 

The quantity e2(A, B) is called the euclidean norm: 

(5.80)                       e2(  ~
𝐴 ,  ~

𝐵 ) = ∑ (𝜇  ~
𝐴 (𝑥𝑖) − 𝜇  ~

𝐵  (𝑥𝑖) )
2𝑛

𝑖=1  

We now define some relative distances. 

Generalized relative Hamming distance 

(5.81)                      𝛿 (  ~
𝐴  ,  ~

𝐵 ) = 
𝑑(𝐴 ,𝐵)

𝑛
  = 

1

𝑛
∑ |𝜇  ~

𝐴 (𝑥𝑖) − 𝜇  ~
𝐵 (𝑥𝑖) |

𝑛
𝑖=1  

One may verify that this is indeed a distance according to (5.49)-(5.52), and with reference 

to (5.73), where the property has not been altered by dividing the two members by n, one 

has 

(5.82)                                   0< 𝛿 (  ~
𝐴 ,  ~
𝐵 ) < 1. 

and (5.81) generalizes (5.53) for the case where  𝜇  ~
𝐴 (𝑥𝑖), 𝜇  ~

𝐵 (𝑥𝑖) ∈ [0 , 1] 

Relative euclidean distance 

(5.83)                            e(  ~
𝐴 ,  ~
𝐵 ) = 

𝑒(  ~
𝐴  ,  ~

𝐵 )

√𝑛
 = √

1

𝑛
∑ (𝜇  ~

𝐴 (𝑥𝑖) − 𝜇  ~
𝐵 (𝑥𝑖) )2

𝑛
𝑖=1  

One may verify that this is indeed a distance according to (5.49)-(5.52), and with reference 

to (5.74), where the property is not altered by dividing the two members by √n. 

one has   

Note that we have |𝜇  ~
𝐴 (𝑥𝑖) − 𝜇  ~

𝐵 (𝑥𝑖)| =MAX |𝜇  ~
𝐴 (𝑥𝑖), 𝜇  ~

𝐵 (𝑥𝑖) | -MIN |𝜇  ~
𝐴 (𝑥𝑖), 𝜇  ~

𝐵 (𝑥𝑖) | 

(5.84)                                 0<e(  ~
𝐴 ,  ~
𝐵 )<1. 

e2(  ~
𝐴 ,  ~
𝐵 ) is called the relative euclidean norm: 
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(5.85)    e 2(  ~
𝐴 ,  ~
𝐵 ) = 

e 2(  ~
𝐴 ,  ~
𝐵 ) 

𝑛
 = 

1

𝑛
∑ (𝜇  ~

𝐴 (𝑥𝑖) − 𝜇  ~
𝐵 (𝑥𝑖) )

2𝑛
𝑖=1  

One will not be astonished that, in the particular case where 𝜇  ~
𝐴 (𝑥𝑖), 𝜇  ~

𝐵 (𝑥𝑖) ∈ [0 , 1] 

(5.86)                                    e 2(  ~
𝐴 ,  ~
𝐵 ) = d(  ~

𝐴 ,  ~
𝐵 ). 

(5.87)                                    e 2(  ~
𝐴 ,  ~
𝐵 ) = 𝛿(  ~

𝐴 ,  ~
𝐵 ). 

These correspond to the boolean property 

(5.88)                                a 2 = a.   a∈ (0,1) 

Thus one may say that (5.76) and (5.81) generalize the notions of Hamming distance, 

absolute or relative, (5.47), and (5.53); one may not classify the euclidean norm as a 

distance since this norm does not satisfy the inequality (5.51) of the notion of distance. 

The choice of a notion of distance, whether generalized (absolute or relative) Hamming or 

euclidean (absolute or relative), depends on the nature of the problem to be treated. These 

possess, respectively, advantages and inconveniences, which become evident in 

applications; we shall occupy ourselves with this in Volume III. One may, obviously, 

imagine and define other notions of distance, 

Example. Let 

 

One has 

d(  ~
𝐴 ,  ~
𝐵 ) =|0.7 – 0.2| + |0.2 – 0| +|0 – 0| + |0.6 – 0.6| + |0.5 -0.8 | + |1 – 0.4 | + |0 – 1| 

(5.91)            =0.5 + 0.2 + 0 + 0 + 0.3 +0.6 + 1   = 2.6  

(5.92)      𝛿(  ~
𝐴 ,  ~
𝐵 ) = 

1

7
d(  ~
𝐴 ,  ~
𝐵 ) = 

2.6

7
 =0.37. 

(5.93) e 2(  ~
𝐴 ,  ~
𝐵 )=  (0.7 – 0.22 + (0.2 – 0)2 + (0 – 0) 2 + (0.6 – 0.6) 2 + (0.5 – 0.8) 2 + ( 1 – 

0.4)2  + ( 0 – 1) 2 

=(0.5)2+(0.2)2+(0)2+(0)2+(0.3)2 + (0.6)2 + (1)2 

=1.74. 

(5.94)e(  ~
𝐴 ,  ~
𝐵 )  = √1.74  = 1.32 

 (5.95)e(  ~
𝐴 ,  ~
𝐵 ) = 

𝑒(  ~
𝐴 ,  ~
𝐵 )

√𝑛
 = 

1.32

√7
 = 0.49 
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Case of a nonfinite reference set. The distances d(  ~
𝐴 ,  ~
𝐵 ) and e(  ~

𝐴 ,  ~
𝐵 ), and thus evidently the 

norm   e 2(  ~
𝐴 ,  ~
𝐵 ), may be extended to the case where the reference set is not finite 

(denumerable or not), with the reservation, of course, that the corresponding summations 

be convergent. 

If E is denumerable, one writes 

(5.96)                              d(  ~
𝐴 ,  ~
𝐵 ) = ∑ |𝜇  ~

𝐴 (𝑥𝑖) − 𝜇  ~
𝐵 (𝑥𝑖) |

𝑛
𝑖=1  

if this series is convergent. 

If E = R, one writes 

(5.97)                                 d(  ~
𝐴 ,  ~
𝐵 ) = ∫ |𝜇  ~

𝐴 (𝑥𝑖) − 𝜇  ~
𝐵 (𝑥𝑖) |

+∞

−∞
 dx 

if this integral is convergent. 

And similarly (see Figure 5.6), 

(5.98)                                e(  ~
𝐴 ,  ~
𝐵 )=  √∑ (𝜇  ~

𝐴 (𝑥𝑖) − 𝜇  ~
𝐵 (𝑥𝑖) )

2𝑛
𝑖=1  

if this series is convergent. 

 

And  

(5.99)                            e(  ~
𝐴 ,  ~
𝐵 )=    √∫ (𝜇  ~

𝐴 (𝑥𝑖) − 𝜇  ~
𝐵 (𝑥𝑖))2𝑑𝑥

+∞

−∞
 

if this integral is convergent 

Generally, 𝛿(  ~
𝐴 ,  ~
𝐵 ) and e(  ~

𝐴 ,  ~
𝐵 ) are not used in the case of a nonfinite reference set, but one 

may, if necessary, at the cost of using a different definition or interposing other notions of 

convergence. 

If one considers the case where E ⊂ R is bounded above and below, then the integral 

(5.97) is convergent and likewise (5.98); then d(  ~
𝐴 ,  ~
𝐵 ) and e(  ~

𝐴 ,  ~
𝐵 ) are always finite. 
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 In this case one will always be able to define 𝛿(  ~
𝐴 ,  ~
𝐵 ) and e(  ~

𝐴 ,  ~
𝐵  ) (Figure 5.7): 

(5.100)                            𝛿(  ~
𝐴 ,  ~

𝐵 ) =  
𝑑(  ~
𝐴 ,  ~
𝐵 )

𝛽−𝛼
 

(5.101)                            e(  ~
𝐴 ,  ~
𝐵 ) = 

𝑒(  ~
𝐴 ,  ~
𝐵 )

√𝛽−𝛼
 

Ordinary subset nearest to a fuzzy subset. We pose the following question: Which is the 

ordinary subset (or subsets) A that has, with respect to a given fuzzy subset  ~
𝐴 , the smallest 

euclidean distance (or, if one wishes, the smallest norm)? 

It is trivial to prove that this will be the ordinary subset, denoted A, such that 

(5.102)                   𝜇  ~
𝐴 (𝑥𝑖)=  0        if  𝜇  ~

𝐴 (𝑥𝑖)< 0.5 

                                                 = 1          if  𝜇  ~
𝐴 (𝑥𝑖)> 0.5 

                                                 = 0 or 1 if  𝜇  ~
𝐴 (𝑥𝑖) = 0.5 

Where, by convention, we take 𝜇  ~
𝐴 (𝑥𝑖) = 0 if 𝜇  ~

𝐴 (𝑥𝑖) = 0.5. 

Example. Let 

 

Index of fuzziness. One may consider, among others, two indexes of fuzziness: the linear 

index of fuzziness, defined with respect to the generalized relative Hamming distance, and 
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the quadratic index of fuzziness, defined with respect to the relative euclidean distance. 

One designates these respectively by ν(  ~
𝐴 ) and 𝜂(  ~

𝐴 ) 

(5.105)                  ν(  ~
𝐴 ) = 

4

𝑛
    d(  ~

𝐴 ,  ~
𝐴 ) 

(5.106)                  𝜂(  ~
𝐴 ) = 

2

√𝑛
c(  ~
𝐴 ,  ~
𝐴 ) 

The number 2 appears in the numerator in order to obtain 

(5.107)                                 0 <ν(  ~
𝐴 ) <1  and 

(5.108)                                 0 <𝜂(  ~
𝐴 ) < 1 

because 

(5.109)                                   0 < δ (  ~
𝐴 ,  ~
𝐴 ) <

1

2
                 and 

(5.110)                                     0 < c (  ~
𝐴 ,  ~
𝐴 ) <

1

2
 

                   The notion of the subset closest to a given fuzzy subset and the notion of the 

index of fuzziness may be extended to the case of a nonfinite reference set, with 

reservations-for example, concerning the index of fuzziness, that the summation be 

convergent. We shall consider the case of reference set    E = [a,b]∈ R. 

                  Figure 5.8 indicates how to evaluate the ordinary subset nearest and, from 

there, the index of fuzziness. For example, formula (5.105) gives 

(5.111)                          ν(  ~
𝐴 ) = 

2

𝑏−𝑎
∫ |𝜓  ~

𝐴 (𝑥) − 𝜇  ~
𝐴 (𝑥)|

𝑏

𝑎
 dx 

 

 

Principal properties concerning the nearest ordinary subset. The following proper- ties may 

be easily verified: 

(5.112)                                          ~
𝐴 ∩  ~

𝐵   =  ~
𝐴 ∩  ~

𝐵  

(5.113)                       ~
𝐴 ∪  ~

𝐵   =  ~
𝐴 ∪  ~

𝐵  
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Another interesting property is 

(5.115)                 ∀ xi∈E :|𝜇  ~
𝐴 (𝑥𝑖) − 𝜇  ~

𝐴 (𝑥𝑖)| = 𝜇  ~
𝐴 ∩  ~

𝐴  (xi). 

which is proved with reference to properties (5.112) and (5.114) We shall see an example 

by reconsidering (5.103) and (5.104): 

 

One sometimes calls the fuzzy subset whose membership function is 2𝜇  ~
𝐴 ∩  ~

𝐴 (x) the 

vectorial indicator of fuzziness. Thus for (5.103) one has 

Equation (5.114) has been omitted. 

Proposed by M. Nadler, research engineer at Honeywell Bull Cie. 

 

Formula (5.105) may be written more conveniently as 

(5.119)             P(  ~
𝐴 ) = 

2

𝑛
∑ 𝜇  ~

𝐴 ∩  ~
𝐴 (𝑥𝑖)

𝑛
𝑖=1  

One again has  

(5.120)                      P(  ~
𝐴 ) = P(  ~

𝐴 ) 

One may ask the following interesting question: Suppose  ~
𝐴  and  ~

𝐵   are two fuzzy subsets 

of the same reference set E; then do  ~
𝐴 ∩  ~

𝐵  or  ~
𝐴 ∪  ~

𝐵 have indexes of fuzziness larger (or 

smaller) than  ~
𝐴  or/and  ~

𝐵 ? The following counterexamples show that, unfortunately, one 

may not say anything on this subject: 

(5.121) 
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The same holds concerning  ~
𝐴 ∪  ~

𝐵 , also unfortunately, and similarly also using η(A). 

                  Since we have seen that a fuzzy subset and its complement have the same index 

of fuzziness, one then sees that each operation (∩, ∪,) does not ensure any systematic 

effect of increasing or decreasing fuzziness. 

Evaluation of fuzziness through entropy. We here restrict ourselves to the case of a finite 

reference set. We know that the entropy of a system measures the degree of dis- order of 

the components of the system with respect to the probabilities of state. 

             Consider N states 𝜖1 ,𝜖2 ,... 𝜖N of a system with which are associated the 

probabilities  P1,P2 , … , PN , then the entropy of the system is defined by 

Taken to a multiplicative coefficient K, to be placed before the summation sign ∑.In 

indicates the naperian logarithm, using the base e. 

(5.123)            |( P1,P2 , … , PN)| = - ∑ 𝑃𝑖 ln𝑃𝑖
𝑛
𝑖=1  

It is easy to show that 

(5.124)  H = 0                (H minimal)     for      Pr = 1. r ϵ (1 , 2, … , N) 

Pr = 0 I ≠ r. 

(5.125) H= In N           (H maximal)     for     P1 = P2 = … = PN = P = 
1

𝑁
 

If we take the formula 

(5.126)                       H(P1,P2 , … , PN) = 
1

ln 𝑁
∑ 𝑃𝑖 ln 𝑃𝑖
𝑛
𝑖=1  

the entropy is then a quantity that varies between 0 and 1: 

(5.127)                            Hmin = 0      and        Hmax = 1. 

We shall see how to use this notion to evaluate the fuzziness of a subset. Consider a fuzzy 

subset  ~
𝐴  

(5.128)             𝜇  ~
𝐴  (x1) = 0.7, 𝜇  ~

𝐴 (x2) = 0.9 ,𝜇  ~
𝐴 (x3) = 0 , 𝜇  ~

𝐴  (x4) = 0.6 , 𝜇  ~
𝐴  (x5) = 0.5 , 𝜇  ~

𝐴  

(x6) = 0.1 

Putting 

(5.129)                                 𝜋  ~
𝐴 (𝑥𝑖) = 

𝜇
 ~

𝐴 (𝑥𝑖)

∑ 𝜇
 ~

𝐴 (𝑥𝑖)
𝑛
𝑖=1

 

one obtains 
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(5.130)     𝜋  ~
𝐴 (𝑥1) =  

7

37
, 𝜋  ~

𝐴 (𝑥2) =  
9

37
 , 𝜋  ~

𝐴 (𝑥3) =  0 , 𝜋  ~
𝐴 (𝑥4) =  

6

37
 , 𝜋  ~

𝐴 (𝑥5) =  
5

37
 ,                             

𝜋  ~
𝐴 (𝑥6) =  

10

37
 

Then 

(5.131)       H|(𝜋1 , 𝜋2, 𝜋3, … , 𝜋𝑛)| = -  
1

ln 6
∑ 𝜋  ~

𝐴 (𝑥𝑖)
𝑛
𝑖=1  ln 𝜋  ~

𝐴 (𝑥𝑖) 

                                                             =  -  
1

ln 6
 (
7

37
 ln 

7

37
 + 

9

37
 ln 

9

37
 + 

6

37
 ln 

6

37
 + 

5

37
 ln 

5

37
 + 

10

37
 

ln 
10

37
 = 0.89 

The general formula permitting the calculation of the entropy from the fuzziness may be 

rewritten as 

(5.132)       H(𝜋  ~
𝐴 (𝑥1), 𝜋  ~

𝐴 (𝑥2),…𝜋  ~
𝐴 (𝑥𝑛)) = -  

1

ln 6
∑ 𝜋  ~

𝐴 (𝑥𝑖))
𝑛
𝑖=1  ln 𝜋  ~

𝐴 (𝑥𝑖) 

                      = 
1

ln𝑁 ∑ 𝜇
 ~

𝐴 (𝑥𝑖)
𝑁
𝑖=1

[ (∑ 𝜇  ~
𝐴 (𝑥𝑖)

𝑁
𝑖=1  .(ln ∑ 𝜇  ~

𝐴 (𝑥𝑖)
𝑁
𝑖=1 )-∑ 𝜇  ~

𝐴 (𝑥𝑖))
𝑁
𝑖=1  ln 𝜇  ~

𝐴 (𝑥𝑖) 

 We remark that this method of calculating fuzziness through entropy does not depend on 

accounting the effective values of μ but their relative values. Thus, the two fuzzy subsets 

below 

 

All ordinary subsets having a single nonzero element have entropy 0. Finally, the empty 

subset will always have an entropy equal to 1. 

          Entropy may be used in the theory of fuzzy subsets, but it is not a good indicatort: it 

relates to the theory of probabilities in systems, a different theory, as we will see in Section 

40, than that we shall examine here. Sometimes it is possible to have some rapprochement, 

but only sometimes. 

Ordinary subset of level a. Let a ∈ [0, 1]; one will call the ordinary subset of level a of a 

fuzzy subset  ~
𝐴 , the ordinary subset 
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(5.136)                              𝐴𝛼 = {x | 𝜇  ~
𝐴 (x) >𝛼}. 

Example 1. Let 

 

Since publication of the present work (first French edition), A. De Luca and S. Termini 

[D2] have defined a new and interesting extension of the concept of entropy for fuzzy 

subsets, 

One has 

 

Example 2. In Figure 5.9 we present an example where the reference set is R*. 
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Important Property: At once we have the evident property 

𝛼2>𝛼1 = 𝐴𝛼2 ⊂ 𝐴𝛼1. 

  We now consider an important theorem: 

Decomposition theorem. Any fuzzy subset   ~𝐴 may be decomposed in the following form, 

clearly as products of ordinary subsets by the coefficients a1: 

(5.141)           ~𝐴 =MAX (𝛼1𝐴𝑎1 , 𝛼2𝐴𝑎2  , … , 𝛼𝑛𝐴𝑎𝑛),   0 < a1< 1 , i = 1 , 2 , … , n. 

The proof is immediate: 

(5.142)                 𝜇𝐴𝑎𝑖
(x)   =  1 if 𝜇  ~

𝐴 (x) >ai. 

                                          = 0 if 𝜇  ~
𝐴  (x) <ai. 

Thus, the membership function of A may be written 

(3.143)                 μ(x) =  𝑎𝑖
𝑀𝐴𝑋  [𝛼𝑖𝐴𝑎𝑖] 

                                       =  𝑎𝑖<𝜇  ~
𝐴  (x)
𝑀𝐴𝑋 [𝛼𝑖] 

                                       = 𝜇  ~
𝐴  (x) 

Example I 

 

Example 2. The decomposition formula (5.142) is still valid when the reference set has the 

power of the continuum. Let, for example, 

(5.145)                𝜇  ~
𝐴  (x)= 1 - 

1

1+ 𝑥2
  , x ϵ R*. 
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        Considering the interval [a, 1], where 0 < a < 1, we may write 

(5.146)                𝜇𝐴𝛼(x)    = 1 if     𝜇  ~
𝐴  (x)∈[0 , 1] 

                                             = 0 if   𝜇  ~
𝐴  (x)∈ [0 , 1] 

Thus, in the given example 

(5.147)             𝜇𝐴𝛼(x)    = 1 if  x>√
𝛼

1− 𝛼
 

                                          = o if x <√
𝛼

1− 𝛼
 

And for all arbitrary sets of value a, 0 < a<1, one may decompose (5.145). 

Synthesis of a fuzzy subset by joining ordinary subsets. The decomposition theorem may 

be applied not only for analysis but also for synthesis: If one then considers a sequence of 

ordinary subsets 

(5.148)                             A1 ⊂⊂ A2 ⊂⊂ … ⊂⊂ An 

and attributes 𝛼1, to A1 , 𝛼2, to A2 , …. , 𝛼𝑛, to An , with 

(5.149)                                𝛼1>𝛼2> … >𝛼𝑛. 

then one obtains a fuzzy subset with the aid of (5.140). 

6. SET OF FUZZY SUBSETS FOR E AND M FINITE 

       We restrict ourselves to the case where E and M are finite. Recall the definition of the 

set of subsets (or power set) of a set by considering a simple example. Let 

(6.1)                                       E = {x1 , x2 , x3} 

Then 

(6.2)                                       P(E) = {𝜑 , { x1} , { x2} , { x3} , { x1 , x2} , { x1 , x3} , { x2 , 

x3} , E }. 

There are 23 = 8 elements in this set. More generally, for a set 

(6,3)                                       E =  { x1 , x2 , …. , xn} 

one may define 2n elements in the same manner. 

         For fuzzy subsets, the power set or "set of fuzzy subsets" is presented in a different 

manner. First we consider an example. Let 

(6,4)                                        E =  { x1 , x2} 

 (6,5)                     and            M = {0 , 
1

2
 , 1 } 
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The set of fuzzy subset  ~
𝑅 (E) will be 

(6.6)       ~
𝑅 (E) = {{(x 1 |0) , (x 2|0)} , {(x 1 |0) , (x 2|0.5)} , {(x 1 |0.5) , (x 2|0)}, {{(x 1 |0.5) , (x 

2|0.5)}, {(x 1 |0) , (x 2|1)}, {(x 1 |1) , (x 2|0)}, {(x 1 |1) , (x 2|0.5)}, {{(x 1 |0.5) , (x 2|1)}, {(x 1 

|1) , (x 2|1)}. 

More generally ,if 

(6.6a)                card E = n      and      card M = m 

Where card means cardinality of that is gives the number of elements of the set, then 

(6.7)                  card  ~
𝑅 (E) = m n. 

It follows that card  ~
𝑅 (E) is finite if and only if m and n are finite. The set R(E) contains 2 n 

ordinary subsets, 

            Consider another example for better comparison with (6.2): 

(6.8)              E =  {x 1 ,x 2,x3}      and   M = {0,
1

2
,1}. 

(6.9)               ~
𝑅 (E) =  {{(x 1 |0) , (x 2|0), (x 3|0)} , {(x 1 |0) , (x 2|0), (x 3|

1

2
} , {(x 1 |0) , (x 2|

1

2
),(x 

3|0)}, {{(x 1 |0.5) , (x 2|0),(x 3|0)}, {(x 1 |0) , (x 2|0),(x 3|1)}, {(x 1 |0) , (x 2|0.5),(x 3|0.5)}, {(x 1 

|0) , (x 2|1),(x 3|0)},………. {(x 1 |1) , (x 2|0.5),(x 3|1)}, {(x 1 |1) , (x 2|1),(x3|0.5), 

{(x1|1),(x2|1),(x 3|1)}. 

 It is well known that the structure of a power set  ~
𝑅 (E) of a set is a distributive and 

complementary lattice that is a Boolean lattice. The set of fuzzy subsets  ~
𝑅 (E) however has 

the structure of a vectorial lattice that is distributive but not complementary. 

Note that one always has 

R(E) ⊂  ~
𝑅 (E) 

Thus  in considering (6.4) and (6.5) , one may write 

R(E)=∅, {𝑥1}, {𝑥2}, {𝑥1, 𝑥2} =

{{(𝑥1|0), (𝑥2|0)}, {(𝑥1|1), (𝑥2|0)}, {(𝑥1|0), (𝑥2|1)}, {(𝑥1|1), (𝑥2|1)}} 

This is ofcourse a subset of (6,6), One will see this more clearly later in figure 6.1 and 

6.2,6.3 and 6.4 and 6.5 and 6.6. 
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PROPERTIES OF THE SET OF FUZZY SUBSETS 

Recall that in a distributive lattice if the complement of an element exists, it is 

unique; and that this is the case for a vectorial lattice. The complementation consider here 

has a different sense from the given in (5,17). 

  The complementation does not necessarily give, as one says complement in a 

lattice, 𝐴 ∩ 𝐴̅ = 𝐸 and 𝐴 ∪ 𝐴̅ = E this is all the difference ,but it is primary. 

 In figures 6.1-6.6 we present several simple examples where , in order to simplify 

the labels , The fuzzy subsets are represented by their respective membership function. 

 Figure 6.2 : E = {𝑥1, 𝑥2}, M = {0,0.5,1}. The figure represent a vector lattice of 

fuzzy subsets, and figures 6.1 a Boolean lattice of ordinary sets. 
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 Figure 6.4: E = {𝑥1, 𝑥2, 𝑥3}, M = {0,0.5,1}. The figure represent a vector lattice of 

fuzzy subsets, and figures 6.3 a Boolean lattice of ordinary sets 

 Figure 6.6 This is another representation of the vector lattice of figure 6.4, to the 

left of which has been placed a Boolean lattice of ordinary sets (figure 6.5) 

7. PROPERTIES OF THE SET OF FUZZY SUBSETS 

 Recall that the principal properties of the power set of an ordinary set E are as 

follows.  Given 𝐴 ⊂ 𝐸,𝐵 ⊂ 𝐸, 𝐶 ⊂ 𝐸, One has : 

(7.1)  𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴, 

(7.2)  A ∪ 𝐵 = 𝐵 ∪ 𝐴.   Commutativity properties 

(7.3) (𝐴 ∩ 𝐵) ∩ 𝐶 = 𝐴 ∩ (𝐵 ∩ 𝐶), 

(7.4) (𝐴 ∪ 𝐵) ∪ 𝐶 = 𝐴 ∪ (𝐵 ∪ 𝐶).             Associativity properties 

(7.5)  𝐴 ∩ 𝐴 = 𝐴, 

(7.6)  𝐴 ∪ 𝐴 = 𝐴.    Idempotence 

(7.7)            𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶), 

(7.8) 𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶).  Distributivity of intersection      

  with respect to Union and                                                                   

union with respect to                                                                                                         

Intersection  

(7.9)            𝐴 ∩ 𝐴̅ = ∅ 

(7.10)         𝐴 ∪ 𝐴̅ = 𝐸 

(7.11)         𝐴 ∩ ∅ = ∅ 

(7.12)         𝐴 ∪ ∅ = 𝐴 

(7.13)         𝐴 ∩ 𝐸 = 𝐴 

(7.14)        𝐴 ∪ 𝐸 = 𝐸 

(7.15)        𝐴̿ = 𝐴                                                            Involution 

(7.16)        𝐴 ∩ 𝐵 ̅̅ ̅̅ ̅̅ ̅̅ =𝐴̅ ∪ 𝐵̅ 

(7.17)        𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅ =  𝐴̅ ∩ 𝐵̅                                                       De Morgan’s theorems 
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  If  ~
𝐴 ,  ~

𝐵  and  ~
𝐶  are fuzzy subsets of E, all the properties (7.1 – 7.17) are 

satisfied except (7.9) and (7.10).  One may define a unique complement, but the properties 

(7.9) an (7.10) hold only for ordinary subsets. 

(7.18)  ~
𝐴 ∩  ~

𝐵 =  ~
𝐵 ∩  ~

𝐴  
Commuatativity 

(7.19)  ~
𝐴 ∪  ~

𝐵 =  ~
𝐵 ∪  ~

𝐴  

(7.20) (  ~
𝐴 ∩  ~

𝐵 ) ∩  ~
𝐶 =  ~

𝐴 ∩ (  ~
𝐵 ∩  ~

𝐶 ) 
Associativity 

(7.21) (  ~
𝐴 ∪  ~

𝐵 ) ∪  ~
𝐶 =  ~

𝐴 ∪ (  ~
𝐵 ∪  ~

𝐶 ) 

(7.22)  ~
𝐴 ∩  ~

𝐴 =  ~
𝐴  

Idempotence 
(7.23)  ∪ ~

𝐴  ~
𝐴 =  ~

𝐴  

(7.24)  ~
𝐴 ∩ (  ~

𝐵  ∪ )  ~
𝐶 =(  ~

𝐴 ∩  ~
𝐵 ) ∪ (  ~

𝐴 ∩  ~
𝐶 ) 

Distributivity 
(7.25)  ~

𝐴 ∪ (  ~
𝐵 ∩ )  ~

𝐶 =(  ~
𝐴 ∪  ~

𝐵 ) ∩ (  ~
𝐴 ∪  ~

𝐶 ) 

(7.26)  ~
𝐴 ∩ ∅ = ∅ Where ∅ is the ordinary set 

such that ∀𝑥𝑖 ∈ 𝐸: 𝜇𝑅(xi)=0 

(7.27)  ~
𝐴 ∪ ∅ =  ~

𝐴   

(7.28)  ~
𝐴 ∩ 𝐸 =  ~

𝐴  where E is the ordinary set 

such that ∀𝑥𝑖 ∈ 𝐸: 𝜇𝑅(xi)=1 

(7.29)  ~
𝐴 ∪ 𝐸 = 𝐸  

(7.30) (  ~𝐴 ))
̅̅ ̅̅ ̅̅ =  ~

𝐴  Involution 

(7.31)  ~𝐴 ∩  ~𝐵̅̅ ̅̅ ̅̅ ̅̅ =  ~𝐴 ∪  ~𝐵  De-Morgan’s theorems for 

the case of fuzzy subsets (7.32)  ~𝐴 ∪  ~𝐵̅̅ ̅̅ ̅̅ ̅̅ =  ~𝐴 ∩  ~𝐵  

 Thus, we stress: All the properties of an ordinary power set are found again in a 

power set of fuzzy subsets (except (7.9) and (7.10).  Thus, we no longer have an algebra in 

the sense of the theory of ordinary sets; the structure is that of a vector lattice. 

8. ALGEBRAIC PRODUCT AND SUM OF TWO FUZZY SUBSETS 

 Let E be a set and 𝑀 = [0,1] its associated membership set, let  ~
𝐴  and  ~

𝐵 be two 

fuzzy subsets of E; one defines the algebraic product of  ~
𝐴  and  ~

𝐵 , denoted 

(8.1)                                                        ~
𝐴 ∙  ~

𝐵  

in the following manner: 

(8.2)                               ∀𝑥 ∈ 𝐸 ∶   𝜇  ~
𝐴 ∙  ~

𝐵 (x)= 𝜇  ~
𝐴 (𝑥) ∙ 𝜇  ~

𝐵 (𝑥).  
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Likewise one defines the algebraic sum of these two subsets, denoted  

(8.3)                                                       ~
𝐴 ∓  ~

𝐵 , 

in the following manner: 

(8.4)                         ∀𝑥 ∈ 𝐸 ∶   𝜇  ~
𝐴 ∓  ~

𝐵 (x)= 𝜇  ~
𝐴 (𝑥) + 𝜇  ~

𝐵 (𝑥) − 𝜇  ~
𝐴 (𝑥) ∙ 𝜇  ~

𝐵 (𝑥).  

Consider again the example in (5.25) – (5.27) 

(8.5)              ~
𝐴 = {(𝑥1|0.2), (𝑥2|0.7), (𝑥3|1), (𝑥4|0), (𝑥5|0.5)}. 

(8.6)                    ~
𝐵 = {(𝑥1|0.5), (𝑥2|0.3), (𝑥3|1), (𝑥4|0.1), (𝑥5|0.5)}. 

(8.7)                  ~
𝐴 ∙  ~

𝐵 = {(𝑥1|0.10), (𝑥2|0.21), (𝑥3|1), (𝑥4|0), (𝑥5|0.25)}. 

(8.8)                    ~
𝐴 ∓  ~

𝐵 = {(𝑥1|0.60), (𝑥2|0.79), (𝑥3|1), (𝑥4|0.1), (𝑥5|0.75)}. 

        We now make the following important remark: 

If 𝑀 = {0,1}, that is, if we are in the case of ordinary subsets, then  

(8.9)                                            𝐴 ∩ 𝐵 = 𝐴 ∙ 𝐵, 

(8.10)                                              𝐴 ∪ 𝐵 = 𝐴 ∓ 𝐵. 

In fact, if 𝜇𝐴(𝑥) ∈ {0,1} and  𝜇𝐵(𝑥) ∈ {0,1}, the following tables are equivalent, but this is 

not true for 𝑀 ≠ {0, 1}, except in a few trivial cases. 

 

 In the present work we use the algebraic product and sum operations rather in 

frequently , but these constitute an interesting direction for other research. 

 If one considers the two operations ∙ and ∔on the power set of fuzzy subsets , only 

the following properties may be verified ; these are obviously more restricted than those 
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for ∩ 𝑎𝑛𝑑 ∪ for the power set of fuzzy subsets, and a fortiori  those concerning ∩ 𝑎𝑛𝑑 ∪ 

for ordinary power sets. One may easily verify 

(8.13)  ~
𝐴 ∙   ~

𝐵 =  ~
𝐵 ∙   ~

𝐴  
Commuatativity 

(8.14)  ~
𝐴 ∔  ~

𝐵 =  ~
𝐵 ∔  ~

𝐴  

(8.15) (  ~
𝐴 ∙  ~

𝐵 ) ∙  ~
𝐶 =  ~

𝐴 ∙ (  ~
𝐵 ∙  ~

𝐶 ) 
Associativity 

(8.16) (  ~
𝐴 ∔  ~

𝐵 ) ∔  ~
𝐶 =  ~

𝐴 ∔ (  ~
𝐵 ∔  ~

𝐶 ) 

(8.17)  ~
𝐴 ∙ ∅ = ∅ Where ∅ is the ordinary set 

such that ∀𝑥𝑖 ∈ 𝐸: 𝜇𝑅(xi)=0 

(8.18)  ~
𝐴 ∔ ∅ =  ~

𝐴   

(8.19)  ~
𝐴 ∙ 𝐸 =  ~

𝐴  where E is the ordinary set 

such that ∀𝑥𝑖 ∈ 𝐸: 𝜇𝑅(xi)=1 

(8.20)  ~
𝐴 ∔ 𝐸 = 𝐸  

(8.21) (  ~𝐴 ))
̅̅ ̅̅ ̅̅ =  ~

𝐴  Involution 

(8.22) 

(8.23) 

 ~𝐴 ∙  ~𝐵̅̅ ̅̅ ̅̅ ̅ =  ~𝐴 ∙  ~𝐵  

 ~𝐴 ∔  ~𝐵̅̅ ̅̅ ̅̅ ̅̅ =  ~𝐴 ∔  ~𝐵  

De-Morgan’s theorems for 

the case of fuzzy subsets 

       Thus properties (7.5) and (7.6)  (idempotence) are not satisfied, not are  

(7.7) and (7.8)  (distributivity), not likewise (7.9) and (7.10). This gives a noticeably 

poorer structure, especially because of the absence of distributivity. We shall show through 

several examples how to prove properties (8.13)-(8.23). 

 We prove (8.16), for example, by putting  

(8.24)              a = 𝜇𝐴(𝑥), 𝑏 =  𝜇𝐵(𝑥), 𝑐 =  𝜇𝐶(𝑥): 

(8.25)             (A ∔ B) ∔ 𝐶 = 𝐴 ∔ (𝐵 ∔ 𝐶)           is verified if 

(8.26)    (𝑎 + 𝑏 − 𝑎𝑏) +  𝑐 – (𝑎 + 𝑏 − 𝑎𝑏)𝑐 =  𝑎 + (𝑏 + 𝑐 + 𝑏𝑐)  − 𝑎(𝑏 + 𝑐 − 𝑏𝑐) 

is verified. By expanding the two members one has 

(8.27) 

𝑎 + 𝑏 − 𝑎𝑏 + 𝑐 − 𝑎𝑐 − 𝑏𝑐 + 𝑎𝑏𝑐 =  𝑎 + 𝑏 + 𝑐 − 𝑏𝑐 − 𝑎𝑏 − 𝑎𝑐 + 𝑎𝑏𝑐 

The two sides are indeed identical. Thus, (8.25) is a correct formula. 

               We prove (8.22). The equation 

(8.28)           ~𝐴 . 𝐵̅̅ ̅̅ ̅̅  =  ~𝐴  ̅̅ ̅ ∔ 𝐵̅        is verified if 

(8.29)        1-ab = (1-a) + (1-b) – (1-a) (1-b) 

                            =1-a+1-b-1+a+b-ab 
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                            =1-ab. 

                We now prove that distributivity does not hold; for example, 

(8.30)        ~
𝐴  . (  ~

𝐵 ∔  ~
𝐶 ) − (  ~

𝐴 .  ~
𝐵 ) ± (  ~

𝐴 .  ~
𝐶 ) 

For the left-hand side of this equation , one must have 

(8.31)        𝑎. (𝑏 + 𝑐 − 𝑏𝑐) = 𝑎𝑏 + 𝑎𝑐 − 𝑎𝑏𝑐 

(8.32)         𝑎𝑏 + 𝑎𝑐 − (𝑎𝑏) (𝑎𝑐)  =  𝑎𝑏 + 𝑎𝑐 − 𝑎2𝑏𝑐. 

These then prove nondistributivity. 

 We note that ∪ is not distributive with respect to . or ∔ , and 

likewise ∩ ; but on the other hand one has 

(8.33)   ~
𝐴 ∙ (  ~

𝐵  ∪ )  ~
𝐶 =(  ~

𝐴 ∙  ~
𝐵 ) ∪ (  ~

𝐴 ∙  ~
𝐶 ) 

(8.34)  

 ~
𝐴 ∙ (  ~

𝐵 ∩ )  ~
𝐶 =(  ~

𝐴 ∙  ~
𝐵 ) ∩ (  ~

𝐴 ∙  ~
𝐶 ) 

 (8.35)                                   ~
𝐴 ∔ (  ~

𝐵  ∪ )  ~
𝐶 =(  ~

𝐴 ∔  ~
𝐵 ) ∪ (  ~

𝐴 ∔  ~
𝐶 ) 

(8.36)                      ~
𝐴 ∔ (  ~

𝐵  ∩ )  ~
𝐶 =(  ~

𝐴 ∔  ~
𝐵 ) ∩ (  ~

𝐴 ∔  ~
𝐶 ) 

            Index of fuzziness for a product.  

 It is possible to define an index of fuzziness for a product similar to 

(5.108) ; one puts 

(8.37)                                        𝜂(  ~
𝐴 ) =

4

𝑁
∑ 𝜇

 ~
𝐴 ∙  ~
𝐴̅ {𝑥𝑖}.

𝑁
𝑖=1  

Example : Let 

(8.38)      

 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 

 ~
𝐴 = 0.7 0.2 0.9 1 0 0.4 1 

(8.39) 

 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 

 ~
𝐴̅ = 0.3 0.8 0.1 0 1 0.6 0 

(8.40) 

 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 

∙  ~
𝐴̅  ~

𝐴̅ = 0.21 0.16 0.09 0 0 0.24 0 
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(8.41) 

𝜂(𝐴) =
4

7
(0.21 + 0.16 + 0.09 + 0 + 0 + 0.24 + 0) = 0.40. 

 One may then, on the other hand, raise the following questions , as 

we have in section 5 for ∩ 𝑎𝑛𝑑 ∪ : Are the indexes of fuzziness for  ~
𝐴  .  ~

𝐵  or  ~
𝐴 ∓  ~

𝐵  

greater than or less than those of  ~
𝐴  or/and  ~

𝐵  ? Unfortunately, the operations . and ∔ do not 

always modify the fuzziness in the same sense , as may be seen with examples. 

General remark on the subject of fuzziness:  

         We have seen that each of the operations ∪,∩, . ,∔ does not systematically increase or 

decrease the fuzziness of a subset A in applying these operations with other subsets of the 

same reference set. It should be borne in mind that the membership function is supposed 

known in order to treat fuzzy subset adequately. 

                      If * is one of the four operations considered above, one may not say, a priori, 

that for  ~
𝐴 ⊂ 𝐸,  ~

𝐵 ⊂ 𝐸,  ~
𝐴  and  ~

𝐵  arbitrary, whether 𝜐(  ~
𝐴 *  ~

𝐵 ) is greater than or less 𝜐(  ~
𝐴 ) or 

𝜐(  ~
𝐵 ). 

                      One has the same situation in considering entropy it recurs their that if one 

wishes to increase or decrease the entropy II , it is necessary that one have knowledge of 

A: knowledge of II is not sufficient , one may surmise .  

UNIT II 

FUZZY GRAPHS 

9. INTRODUCTION 

    The notions of graph, correspondence and  relation play a fundamental role in 

applications  of mathematics. The may be generalized with respect to the notion of fuzzy 

subsets. One will then discover some new and very interesting properties. For example, the 

notion of an equivalence class will be found to be replaced by that similitude, stronger and 

apt for representing some less precise but more often encountered situations. Preorder and 

order are likewise generalized; whereas some other relations such as resemblance and 

dissemblance, are defined.  This, then is a new theory that may be formed with Fuzzy 
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relations. It is only a beginning. It is likely that research on fuzzy concepts will develop 

progressively in importance and will permit at least  good descriptions of complex 

phenomena, constrained until  now to the specifications all or nothing. 

                                          10.  FUZZY GRAPHS 

   Consider two sets 𝐸1 and 𝐸2 ; let x designate an element of 𝐸1 and y an element of 𝐸2. 

The set of ordered pairs (x,y) defines the product set 𝐸1 ×𝐸2. 

The Fuzzy subset 𝐺
~

  such that 

(11.1)         For every (𝑥, 𝑦) ∈ 𝐸1 × 𝐸2: 𝜇𝐺
~
(𝑥, 𝑦) ∈ 𝑀 

where M is the membership set of 𝐸1 × 𝐸2, is called a fuzzy graph. 

Example 1: 

 Let 𝐸1 = {𝑥1, 𝑥2, 𝑥3}  

and  

𝐸2 = {𝑦1, 𝑦2} 

𝐸1 × 𝐸2 = {(𝑥1, 𝑦1), (𝑥1, 𝑦2), (𝑥2, 𝑦1), {(𝑥2, 𝑦2), (𝑥3, 𝑦1), (𝑥3, 𝑦2)} . 

Set, in order to simplify notation, 

𝜇(𝑥𝑖, 𝑦𝑗) = 𝜇𝐺
~
(𝑥𝑖, 𝑦𝑗) , 𝑖 = 1, 2, 3, 𝑗 = 1, 2. 

which will be called the value of the ordered pair (𝑥𝑖, 𝑦𝑗). 

Consider for example : 

𝜇(𝑥1, 𝑦1) = 0.3      ,    𝜇(𝑥1, 𝑦2) = 0.7        , 𝜇(𝑥2, 𝑦1) = 1      

𝜇(𝑥2, 𝑦2) = 0      ,    𝜇(𝑥3, 𝑦1) = 0.5        , 𝜇(𝑥3, 𝑦2) = 0.2.    

This function defines the fuzzy subset 

 𝐺
~
={((𝑥1, 𝑦1)|0.3), ((𝑥1, 𝑦2)|0.7), ((𝑥2, 𝑦1)|1), ((𝑥2, 𝑦2)|0), 

((𝑥3, 𝑦1)|0.5), ((𝑥3, 𝑦2)|0.2)}     

This fuzzy subset may be represented by a matrix such as that shown in Figure 10.1. 

 𝑦1 𝑦2 

𝑥1 0.3 0.7 

𝑥2 1 0 

𝑥3 0.5 0.2 
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The graph 

𝐺
~
⊂ 𝐸1 × 𝐸2 

is a fuzzy graph. 

The graph  

𝐺
~
={((𝑥1, 𝑦1)|0), ((𝑥1, 𝑦2)|1), ((𝑥2, 𝑦1)|1), ((𝑥2, 𝑦2)|1), 

((𝑥3, 𝑦1)|1), ((𝑥3, 𝑦2)|0)}     

is an ordinary graph in set theory (Figure 10.2)  

 𝑦1 𝑦2 

𝑥1 0 1 

𝑥2 1 1 

𝑥3 1 0 

Figure 10.2 

Example 2: Let 𝐸1 = 𝐸2 = 𝑅
+,  where 𝑅+ is the set of nonnegative real numbers.  Let 𝑥 ∈

𝑅+ and   y∈ 𝑅+ and consider the product set 𝑅+ × 𝑅+.  Then the relation 𝑦 > 𝑥 defines a 

fuzzy graph in 𝑅+
2
. 

        Suppose that one has a use for the function  

𝜇(𝑥, 𝑦|𝑦 = 𝑥) = 𝑒0 = 1 

𝜇(𝑥, 𝑦|𝑦 = 2𝑥) = 𝑒−1. 

…………………. 

𝜇(𝑥, 𝑦|𝑦 = 𝑘𝑥) = 𝑒−(𝑘−1),  

…………… . 𝑘 = 1,2,3,4,……. 

with 𝑀 = {1, 𝑒−1, 𝑒−2, ………… , 𝑒−(𝑘−1), …… . .0}. 

 

Figure 10.3 
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Figure 10.3 gives a visual representation of this fuzzy subset for the points 𝑦 = 𝑘𝑥, 𝑘 ≥ 1. 

Example 3 (Berge graphs).  

 A graph in the sense of Berge is one such that  

𝐸1 = 𝐸2 = 𝐸 

countable and is formed by the subset of ordered pairs 

(𝑥, 𝑦) ∈ 𝐺 ⊂ 𝐸 × 𝐸, 

such that  

𝐺 ∩ 𝐺̅ = ∅ 

and 

𝐺 ∪ 𝐺̅ = 𝐸 × 𝐸. 

     For such graphs, which evidently are only a particular case of the notion of graphs in 

set theory, one may define a generalization to fuzzy graphs.  Thus, Figures 10.4, 10.6, 10.8 

and 10.10 represent the same Berge fuzzy graphs, whereas Figures 10.5, 10.7, 10.9 and 

10.11 show the same ordinary Berge graph. 

 

Figure 10.4                                          Figure 10.5 
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Figure 10.6                                                Figure 10.7 

 

Figure 10.8     Figure 10.9 

 

Figure 10.10                                                 Figure 10.11  

 Using Berge’s notation, for the ordinary graph in Figures 10.5, 10.7, 10.9 and 

10.11, one puts 

𝛤{𝐴} = {𝐵},  

𝛤{𝐵} = {𝐴}, 

𝛤{𝐶} = {𝐵, 𝐶}. 

where 𝛤{𝑋} is called a multivalued mapping of {X} in its reference set E. 

 In the spirit of this notation, one will write for the fuzzy graph represented in 

various fashions in Figures 10.4, 10.6, 10.8 and 10.10. 

𝛤{𝐴} = {(𝐴|0,5), (𝐵|1), (𝐶|0)} 

𝛤{𝐵} = {(𝐴|0), (𝐵|0), (𝐶|0,5)} 

𝛤{𝐴} = {(𝐴|1), (𝐵|1), (𝐶|0)} 

Example 4: 

 Figures 10.12 represent a fuzzy graph and Figure 10.13 an ordinary graph. 
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Figure 10.12                                       Figure 10.13 

 

Figure 10.14                                Figure 10.15 

Also, Figure 10.14 represents a fuzzy graph and Figure 10.15 an ordinary graph. 

Example 5: 

 

Figure 10.16 

The shaded parts of Figure 10.16, where we attribute a value 𝜇(𝑥, 𝑦), to each point   (x, y), 

represent a fuzzy graph. 
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Generalization : 

 What has been presented for a product set 𝐸1 × 𝐸2 may be generalized for a 

product set 

𝐸1 × 𝐸2 × ……………× 𝐸𝑛 . 

The fuzzy subset such that 𝑥(𝑖) ∈ 𝐸𝑖 , 𝑖 = 1, 2,…… . . , 𝑛,  

∀  (𝑥(1), 𝑥(2), ……… . . 𝑥(𝑛)) ∈ 𝐸1 × 𝐸2 ×……………× 𝐸𝑛 , 

𝜇(𝑥(1), 𝑥(2), ……… . . 𝑥(𝑛)) ∈ 𝑀, 

where M is the membership set of 𝐸1 × 𝐸2 × ……………× 𝐸𝑛 , is called a fuzzy graph. 

Example : 

Let 𝐸1 = {𝑥1, 𝑥2}, 𝐸2 = {𝑦1, 𝑦2} , 𝐸3 = {𝑧1, 𝑧2}, 𝑀 = [0,1]. 

𝐺
~
={((𝑥1, 𝑦1, 𝑧1)|0.3) , ((𝑥1, 𝑦1, 𝑧2 )|0.2), ((𝑥1, 𝑦2, 𝑧1)|1), ((𝑥1, 𝑦2, 𝑧2)|0), 

((𝑥2, 𝑦1, 𝑧1)|0), ((𝑥2, 𝑦1, 𝑧2)|0.1), ((𝑥2, 𝑦2, 𝑧1)|0.9), ((𝑥2, 𝑦2, 𝑧2)|0.7) }     

is a fuzzy graph in 𝐸1 × 𝐸2 × 𝐸3. 

11. FUZZY RELATION 

 As in done in the theory of ordinary sets, the notion of a fuzzy graph may be 

explained in terms of the notion of a fuzzy relation.  Let P be a product set of n sets and M 

its membership function; a fuzzy relation is a fuzzy subset of P taking its values in M. 

Example 1: 

Let  

𝐸1 = {𝑥1, 𝑥2, 𝑥3},   

𝐸2 = {𝑦1, 𝑦2, 𝑦3, 𝑦4}, 

𝑀 = [0,1]. 
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 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 

𝑥1 0 0 0.1 0.3 1 

𝑥2 0 0.8 0 0 1 

𝑥3 0.4 0.4 0.5 0 0.2 

Figure 11.1 

 The table presented in 11.1 expresses a fuzzy 2-ary relation (which we may 

describe as binary if no confusion with other interpretations of the word binary is 

possible). 

Example 2:    Let  

𝐸1 = 𝐸2 = 𝑅 

where 𝑅 = (−∞,∞), that is, the set of real numbers.  Then the relation 𝑦 ⊰ 𝑥, where 𝑥 ∈

𝑅, 𝑦 ∈ 𝑅, is a fuzzy relation in 𝑅2. 

 For example, a subjective expression (that is, a valuation that may depend on a 

subjective estimate) of 𝑦 ⊰ 𝑥 may be given by 

𝜇𝑅2(𝑥, 𝑦) = 0 𝑖𝑓 𝑦 ≥ 𝑥, 

=
1

1 +
1

(𝑥−𝑦)2

 𝑖𝑓 𝑦 < 𝑥. 

Notation : 

         A fuzzy relation in 𝐸1 × 𝐸2 will be written as 

𝑥 ∈ 𝐸1 , 𝑦 ∈ 𝐸2 ∶ 𝑥𝑅
~
𝑦. 

Symbols used for extrema : 

    In what follows we will use the symbols 

⋁ 𝑡𝑜 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑎𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥,

𝑥

 

⋀ 

𝑥

 𝑡𝑜 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑎𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥. 

Thus, writing 

𝜇1(𝑥) =⋁𝜇(𝑥, 𝑦),

𝑦

 

will be equivalent to  
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𝜇1(𝑥) = 𝑀𝐴𝑋
𝑦

𝜇(𝑥, 𝑦). 

Likewise, writing 

𝜇2(𝑥) =⋀𝜇(𝑥, 𝑦),

𝑦

 

will be equivalent to 

𝜇2(𝑥) = 𝑀𝐼𝑁
𝑦
𝜇(𝑥, 𝑦). 

Projection of a fuzzy relation: 

 The membership function 

𝜇𝑅
~

(1)(𝑥) =⋁𝜇𝑅
~
(𝑥, 𝑦)

𝑦

 

defines the first projection of 𝑅
~
. 

       The second projection of the first project (or vice versa) will be called the global 

projection of the fuzzy relation and will be denoted by ℎ (𝑅
~
).  Thus, 

ℎ (𝑅
~
) =⋁⋁𝜇𝑅

~
(𝑥, 𝑦)

𝑦𝑥

 

=⋁⋁𝜇𝑅
~
(𝑥, 𝑦)

𝑥𝑦

. 

If ℎ (𝑅
~
) = 1, the relation is said to be normal.  If ℎ (𝑅

~
) < 1, the relation is called 

subnormal. 

Example 1: 

 

Figure 11.2                               global  

                                                 projection 

 



47 
 

We calculate the first projection: 

𝜇𝑅
~

(1)(𝑥) =⋁𝜇𝑅
~
(𝑥, 𝑦)

𝑦

. 

𝜇𝑅
~

(1)(𝑥1) =⋁𝜇𝑅
~
(𝑥1, 𝑦)

𝑦

= 𝑀𝐴𝑋{0.1, 0.2, 1, 0.3} = 1. 

𝜇𝑅
~

(1)(𝑥2) =⋁𝜇𝑅
~
(𝑥2, 𝑦)

𝑦

= 𝑀𝐴𝑋{0.6, 0.8, 0, 0.1} = 0.8. 

………………………… 

𝜇𝑅
~

(1)(𝑥6) =⋁𝜇𝑅
~
(𝑥6, 𝑦)

𝑦

= 𝑀𝐴𝑋{0.9, 0,   0.3, 0.7} = 0.9. 

One may similarly calculate the second projection.  The results are given in Figure 11.2.  

We see that this relation  𝑅
~

 is normal. 

Example 2: We consider the case of a relation 𝑥𝑅
~
𝑦 where 𝑥 ∈ 𝑅+ 𝑎𝑛𝑑 𝑦 ∈ 𝑅+ with  

𝜇𝑅
~
(𝑥, 𝑦) = 𝑒−𝑘(𝑦−𝑥)

2
, 𝑘 > 1 

Figure (11.3) which one may take to be defined by the fuzzy phrase: x and y are very near 

to one another (for a sufficient value of k). 

 

Figure 11.3 

In this case we see, for a fixed value 𝑥0, 

𝜇𝑅
~

(1)(𝑥0) =⋁𝜇𝑅
~
(𝑥0, 𝑦)

𝑦

 

=⋁𝑒−𝑘(𝑦−𝑥0)
2

𝑦
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= 𝑒−𝑘(𝑦−𝑥0)
2   𝑓𝑜𝑟 𝑦 = 𝑥0 

= 1. 

One will find the same value for 𝜇𝑅
~

(1)(𝑦0) and therefore ℎ (𝑅
~
) = 1. 

Support of a fuzzy relation 

 One will call the support of 𝑅
~

 the ordinary subset of ordered pairs (𝑥, 𝑦) for which 

the membership function is nonzero.   Thus 

    𝑆 (𝑅
~
) = {(𝑥, 𝑦)/𝜇𝑅

~
(𝑥, 𝑦) > 0}.  

Example 1: 

 𝑦1 𝑦2 𝑦3 𝑦4 

𝑥1 0.1 0 0.2 0 

𝑥2 0.3 0 0 0.9 

𝑥3 0.4 0.7 1 1 

Figure 11.4 

𝑆 (𝑅
~
) = {(𝑥1, 𝑦1), (𝑥1, 𝑦3), (𝑥2, 𝑦1), (𝑥2, 𝑦4) 

(𝑥3, 𝑦1), (𝑥3, 𝑦2), (𝑥3, 𝑦3), (𝑥3, 𝑦4)}. 

Example 2 : 

 Consider a relation 𝑥 𝑅
~
 𝑦 where 𝑥 ∈ 𝑅+ 𝑎𝑛𝑑 𝑦 ∈ 𝑅+ with  

𝜇𝑅
~
(𝑥, 𝑦) = 𝑒−(𝑦−𝑥)

2
, |𝑦 − 𝑥| ≤ 0.46, 

                    = 0,             |𝑦 − 𝑥| > 0.46.     

  Figure 11.5 

 One then has  

𝑆 (𝑅
~
) = {

𝑥, 𝑦

|𝑥 − 𝑦|
< 0.46}. 
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Envelope of a fuzzy relation: 

       Let 𝑅
~

 and ϱ
~
 be two fuzzy relations such that  

∀ (𝑥, 𝑦) ∈ 𝐸1 × 𝐸2: 𝜇𝑅
~
(𝑥, 𝑦) < 𝜇ϱ

~

(𝑥, 𝑦) 

one that says that ϱ
~
 is an envelope of 𝑅

~
 or that 𝑅

~
 is the enclosure of ϱ

~
. 

We note  

𝑅
~
 ⊂ ϱ

~
 

If ϱ
~

 is an envelope of 𝑅
~
. 

Example 1: 

Figure 11.6.  One may verify that ϱ
~

  is an envelope of 𝑅
~
. 

     

Figure 11.6 

Example 2: 

 Consider the fuzzy relation 𝑥 𝑅1 𝑦 
~

 with 𝑥 ∈ 𝑅+ 𝑎𝑛𝑑 𝑦 ∈ 𝑅+ such that 𝑦 ⊱ 𝑥, that 

is, “y is much larger than x” expressed by 

𝜇𝑅1
~

(𝑥, 𝑦) = 0 , 𝑦 − 𝑥 < 0 

                                   = 1 − 𝑒−𝑘1(𝑦−𝑥)
2   ,𝑦−𝑥≥0 

Let now 𝑘2 > 𝑘1; then 

𝜇𝑅2
~

(𝑥, 𝑦) = 0 , 𝑦 − 𝑥 < 0 

                                   = 1 − 𝑒−𝑘1(𝑦−𝑥)
2  , 𝑦 − 𝑥 ≥ 0. 

is an envelope. 
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Figure 11.7 

Union of two relations: 

 The Union of two relations  𝑅
~
 and ϱ

~
, denoted by  𝑅

~
 ∪ ϱ

~
 or  

𝑅
~
+ ϱ
~
 , is a relation such that  

𝜇𝑅
~
 ∪ϱ
~

(𝑥, 𝑦) = 𝜇𝑅
~
(𝑥, 𝑦) ∨ 𝜇ϱ

~

(𝑥, 𝑦) 

= 𝑀𝐴𝑋 {𝜇𝑅
~
(𝑥, 𝑦), 𝜇ϱ

~

(𝑥, 𝑦)}. 

If 𝑅1
~
, 𝑅2
~
, …………… ,𝑅𝑛

 ~ 
 are relations,  

𝜇𝑅1
~
∪ 𝑅2
~
∪ ……………,∪ 𝑅𝑛

 ~ 

(𝑥, 𝑦) =⋁𝜇𝑅𝑖
 ~ 

(𝑥, 𝑦).

𝑅𝑖
 ~ 
 

 

We note the result, 

𝑅
~
=⋃𝑅𝑖

 ~ 
  𝑜𝑟 ∑𝑅𝑖

 ~ 
 

𝑖

.

𝑖

 

Example 1: 

 

Figure 11.8 

Example 2: 
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 In Figure 11.9(a) we have expressed a fuzzy relation 𝑥 𝑅1 𝑦,
~

 𝑥 ∈ 𝑅+ 𝑎𝑛𝑑 𝑦 ∈ 𝑅+, 

such that “x and y are very near.”   In Figure 11.9(b) one sees a relation 𝑥 𝑅2𝑦,
~

 𝑥 ∈

𝑅+ 𝑎𝑛𝑑 𝑦 ∈ 𝑅+, such that “x and y are very different”. 

 The relation 𝑥  𝑅3 𝑦,
~

 𝑥 ∈ 𝑅+ 𝑎𝑛𝑑 𝑦 ∈ 𝑅+, such that “x and y are very near or/and 

very different” is defined by the curve 𝜇3(𝑥, 𝑦) such that  

𝜇𝑅3
~

(𝑥, 𝑦) = 0                   , |𝑦 − 𝑥| < 0 

= 𝜇𝑅1
~

(𝑥, 𝑦), 0 ≤ |𝑦 − 𝑥| ≤∝ 

= 𝜇𝑅2
~

(𝑥, 𝑦), ∝≤ |𝑦 − 𝑥|, 

with  

|𝑦 − 𝑥| =∝ 

such that  

𝜇𝑅1
~

(𝑥, 𝑦) = 𝜇𝑅2
~

(𝑥, 𝑦) 

 

  

Figure 11.9 

 In a logic constructed on the theory of ordinary sets, a proposition like “x and y are 

very near or/and very different must be reduced to “x and y are very near or very 

different”.  But with respect to the theory of fuzzy subsets, the first proposition is coherent; 

it expresses that the “and” case is conceivable with a very weak weight, corresponding to 

the case where x and y are neither very near nor very different. 

 This example illustrates well the propositional flexibility that one finds in the 

present theory. 

 

Intersection of two relations: 
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The intersection of two relations  𝑅
~
 and ϱ

~
, denoted by  𝑅

~
 ∩ ϱ

~
 , is define by the 

expression  

𝜇𝑅
~
 ∩ ϱ
~

(𝑥, 𝑦) = 𝜇𝑅
~
(𝑥, 𝑦) ⋀ 𝜇ϱ

~

(𝑥, 𝑦) 

= 𝑀𝐼𝑁 {𝜇𝑅
~
(𝑥, 𝑦), 𝜇ϱ

~

(𝑥, 𝑦)}. 

If 𝑅1
~
, 𝑅2
~
, …………… ,𝑅𝑛

 ~ 
 are relations,  

𝜇𝑅1
~
∩ 𝑅2
~
∩ ……………,∩ 𝑅𝑛

 ~ 

(𝑥, 𝑦) =⋀𝜇𝑅𝑖
 ~ 

(𝑥, 𝑦)

𝑅𝑖
 ~ 

. 

We note the result, 

𝑅
~
=⋂𝑅𝑖

 ~ 
𝑖

. 

Example 1: Consider 

 

𝑅
~
 ∩  ϱ

~
 is, 

 

Figure 11.10 
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Example 2: 

 

Figure 11.11 

In Figure 11.11(a) is expressed  the fuzzy relation 𝑥 𝑅1 𝑦,
~

 𝑥 ∈ 𝑅+ 𝑎𝑛𝑑 𝑦 ∈ 𝑅+, such that 

“|𝑥 − 𝑦| is very near 𝛼.”   In Figure 11.11(b) one sees a relation 𝑥 𝑅2𝑦,
~

 𝑥 ∈ 𝑅+ 𝑎𝑛𝑑 𝑦 ∈

𝑅+, such that “|𝑥 − 𝑦| is very near 𝛽” (with 𝛽 > 𝛼). 

 Figure 12.11(c ) shows how to obtain  

𝑅3
~
= 𝑅1

~
∩ 𝑅2

~
 

One has 

𝜇𝑅3
~

(𝑥, 𝑦) = 0                   , |𝑦 − 𝑥| < 𝛽 − 𝛼 

= 𝜇𝑅1
~

(𝑥, 𝑦), 𝛽 − 𝛼 ≤ |𝑦 − 𝑥| ≤ 𝛾 

= 𝜇𝑅2
~

(𝑥, 𝑦), 𝛾 ≤ |𝑦 − 𝑥|, 

where 𝛾 is the value of |𝑦 − 𝑥| such that 𝜇𝑅1
~

(𝑥, 𝑦) = 𝜇𝑅2
~

(𝑥, 𝑦).  The result appears in 

Figure 11.11 (d). 

Algebraic product of two relations: 

One defines the algebraic product of two relations  𝑅
~
 and ϱ

~
, denoted by  𝑅

~
 ∙ ϱ
~

 , is 

define by the expression  
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𝜇𝑅
~
 ∙ ϱ
~

(𝑥, 𝑦) = 𝜇𝑅
~
(𝑥, 𝑦)  ∙  𝜇ϱ

~

(𝑥, 𝑦). 

In the right-hand side of this expression, the ‘∙ ′ indicates a numerical product (ordinary 

multiplication). 

Example 1: 

Consider  

 

 

Then 𝑅
~
 ∙  ϱ

~
 is 

 

Figure 11.12 

Example 2: 

 Taking again the example considered in Figures 11.11(a) and 11.11(b), let  

𝑅3
~
= 𝑅1

~
∙  𝑅2
~
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One has 

𝜇𝑅3
~

(𝑥, 𝑦) = 0                   , |𝑦 − 𝑥| < 𝛽 − 𝛼 

                                         = 𝜇𝑅1
~

(𝑥, 𝑦)  ∙ 𝜇𝑅2
~

(𝑥, 𝑦), 𝛽 − 𝛼 ≤ |𝑦 − 𝑥| 

See Figures 11.13 (a)-(c ). 

Figure 11.13 

Distributivity 

 We note the properties of distributivity: 

𝑅
~
 ∩ ( ϱ

~
∪ б
~
) = (𝑅

~
 ∩ ϱ

~
) ∪ (𝑅

~
 ∩ б

~
), 



56 
 

𝑅
~
 ∪ ( ϱ

~
∩ б
~
) = (𝑅

~
 ∪ ϱ

~
) ∩ (𝑅

~
 ∪ б

~
) 

𝑅
~
 ∙ ( ϱ

~
∪ б
~
) = (𝑅

~
 ∙ ϱ
~
) ∪ (𝑅

~
 ∙ б
~
), 

𝑅
~
 ∙ ( ϱ

~
∩ б
~
) = (𝑅

~
 ∙ ϱ
~
) ∩ (𝑅

~
 ∙ б
~
), 

Algebraic sum of two relation 

 One defines the algebraic sum of two 𝑅
~
 and ϱ

~
, denoted 𝑅

~
   ϱ

~
+
~  , by the expression 

𝜇𝑅
~
  ϱ
~

+
~ (𝑥, 𝑦) = 𝜇𝑅

~
(𝑥, 𝑦) + 𝜇ϱ

~

(𝑥, 𝑦) − 𝜇𝑅
~
(𝑥, 𝑦) ∙  𝜇ϱ

~

(𝑥, 𝑦) 

The ∙ indicates ordinary multiplication and the sign +, ordinary addition. 

Example:  

Consider  

 

Then 𝑅
~
   ϱ

~
+
~  is  
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Figure 11.14 

We note two properties of distributivity: 

𝑅
~
   +
~ ( ϱ

~
∪ б
~
) = (𝑅

~
   +
~ ϱ
~
) ∪ (𝑅

~
   +
~ б
~
), 

𝑅
~
   +
~ ( ϱ

~
∩ б
~
) = (𝑅

~
   +
~ ϱ
~
) ∩ (𝑅

~
   +
~ б
~
). 

Complement of a relation: 

        The complement of 𝑅
~

, denoted 𝑅
~
,̅ is the relation such that  

∀ (𝑥, 𝑦) ∈ 𝐸1 × 𝐸2: 𝜇𝑅
~
̅(𝑥, 𝑦) = 1 − 𝜇𝑅

~
(𝑥, 𝑦). 

Example 1:  

Figure 11.15 
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Example 2 : 

 

Figure 11.16 

In Figure 11.16 (a) is represented the membership function 

𝜇𝑅1
~

(𝑥, 𝑦), corresponding to the relation 𝑥𝑅1
~
𝑦 signifying “x and y are very near to one 

another”, 𝑅+ 𝑎𝑛𝑑 𝑦 ∈ 𝑅+. 

Figure 11.16 (b) then represents the membership function  

𝜇𝑅2
~

(𝑥, 𝑦) = 1 − 𝜇𝑅1
~

(𝑥, 𝑦), 

which may be associated with the relation “x and y are not very near”. 

 Figure 11.16 (c) may be taken to represent a membership function 𝜇𝑅3
~

(𝑥, 𝑦) 

relative to the relation “x and y are very difficult from one another”. 

 We note that the two propositions “x and y are not very near” and “x and y are very 

different” are not generally identical, unless one chooses membership functions that 

represent both propositions rather poorly. 

 

Disjunctive sum of two relations: 
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 The disjunctive sum, denoted 𝑅
~
 ⨁ϱ

~
, is defined by the expression 

𝑅
~
 ⨁ϱ

~
= (𝑅

~
 ∩ ϱ

~
) ∪ (𝑅

~
 ∩ б

~
). 

Example 1: 

 

Figure 11.17 

Example 2: 

 Consider again the example given in Figures 11.11 (a) and 11.11 (b): Let 𝑅
~

 be the 

relation induced by the membership function in Figure 11.11(a) and ϱ
~
 that pertaining to 

Figure 11.11(b).  By following Figures 11.18 (a) – (i), the reader may see how to obtain 

the membership function relative to the relation 𝑅
~
 ⨁ϱ

~
. 

     Compare Figures 11.11 (d) and 11.18(i); as may be seen, the disjunctive or Figure 

11.18(i) gives a considerably different result than and also rather different than that of 

or/and  (Figure 11.18(j)). 
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Figure 11.18 

One likewise defines the operation of complementation: 

𝑅
~
 ⨁̅ϱ

~
= 𝑅

~
 ⨁ϱ

~

̅̅ ̅̅ ̅̅ ̅ 
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= (𝑅
~
 ∩ ϱ

~
̅) ∪ (𝑅

~
̅  ∩ б

~
). 

 

Figure 11.19 

 We reconsider the preceding examples in Figures 11.19 and 11.20.  Figure 11.20 

has been obtained with reference to Figure 11.18 (i). 

 

Figure 11.20 

Ordinary relation closest to a fuzzy relation: 

 Let  𝑅
~

 be a fuzzy relation; an ordinary relation closest to 𝑅
~
 will be given by  

𝜇𝑅
~
(𝑥, 𝑦) = 0 𝑖𝑓 𝜇𝑅

~
(𝑥, 𝑦) < 0.5 
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= 1 𝑖𝑓 𝜇𝑅
~
(𝑥, 𝑦) > 0.5 

= 0 𝑜𝑟 1 𝑖𝑓 𝜇𝑅
~
(𝑥, 𝑦) = 0.5 

Example : 

 

Figure 11.21                                         Figure 11.22 

12.  COMPOSITION OF TWO FUZZY RELATIONS 

 We mention now that sometimes we will use the notion 

𝑅
~
⊂ 𝑋 × 𝑌 

signifying 

𝐺
~
⊂ 𝑋 × 𝑌 

where 𝑅
~

 is the fuzzy relation corresponding to the fuzzy graph 𝐺
~
. 

Max-Min composition: 

 Let 𝑅1
~
⊂ 𝑋 × 𝑌 and 𝑅2

~
⊂ 𝑋 × 𝑌.  We define the min-max composition of 

𝑅1
~
 𝑎𝑛𝑑 𝑅2

~
, denoted by 𝑅1

~
 ° 𝑅2

~
, by the expression 

𝜇𝑅1
~
 ° 𝑅2
~

(𝑥, 𝑧) =⋁[

𝑦

𝜇𝑅1
~

(𝑥, 𝑦)⋀𝜇𝑅2
~

(𝑥, 𝑦)]  

= 𝑀𝐴𝑋
𝑦
[𝑀𝐼𝑁( 𝜇𝑅1

~

(𝑥, 𝑦), 𝜇𝑅2
~

(𝑥, 𝑦))],  

where 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, and z∈ 𝑍. 

Example 1: 
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 Consider two fuzzy relations 𝑥𝑅1
~
𝑦 𝑎𝑛𝑑 𝑦𝑅2

~
𝑧 , 𝑤ℎ𝑒𝑟𝑒 𝑥, 𝑦 𝑎𝑛𝑑 𝑧 ∈ 𝑅+.  We 

suppose 

𝜇𝑅1
~

(𝑥, 𝑦) = 𝑒−𝑘(𝑥−𝑦)
2
, 𝑘 ≥ 1. 

𝜇𝑅2
~

(𝑦, 𝑧) = 𝑒−𝑘(𝑦−𝑧)
2
, 𝑘 ≥ 1. 

We now propose to determine 𝜇𝑅1
~
 ° 𝑅2
~

(𝑥, 𝑧). 

          Consider two values x=a and z=b of the variables x and z.  Here the membership 

functions  are continuous on the interval [0,∞); we may write 

𝜇𝑅1
~
 ° 𝑅2
~

(𝑎, 𝑏) =⋁[

𝑦

𝜇𝑅1
~

(𝑎, 𝑦)⋀𝜇𝑅2
~

(𝑦, 𝑏)]  

=⋁[

𝑦

𝑒−𝑘(𝑎−𝑦)
2
⋀𝑒−𝑘(𝑦−𝑏)

2
] . 

              The composition of 𝑅1
~
  𝑎𝑛𝑑  𝑅2

~
 with respect to the max-min operation is 

represented in Figure 12.1.  Thus,  

𝜇𝑅1
~
 ° 𝑅2
~

(𝑎, 𝑏) = 𝑒−𝑘(𝑎−
𝑎+𝑏

2
)
2

 

= 𝑒−𝑘(
𝑎−𝑏

2
)
2

. 
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Figure 12.1 

and, for all values of x and z, 

𝜇𝑅1
~
 ° 𝑅2
~

(𝑥, 𝑧) = 𝑒
−𝑘(

𝑥−𝑧

2
)
2

. 

For simplicity, we have here considered two identical functions 𝜇𝑅1
~

(𝑥, 𝑦) and 𝜇𝑅1
~

(𝑦, 𝑧), 

but the reasoning remains the same for two distinct functions. 
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Example 2: (Figure 12.2) 

 

Figure 12.2 

Let (𝑥, 𝑧) = (𝑥1, 𝑧1) 

𝑀𝐼𝑁(𝜇𝑅1
~

(𝑥1, 𝑦1), 𝜇𝑅2
~

(𝑦1, 𝑧1)) = 𝑀𝐼𝑁(0.1, 0.9) 

= 0.1.   

𝑀𝐼𝑁 (𝜇𝑅1
~

(𝑥1, 𝑦2), 𝜇𝑅2
~

(𝑦2, 𝑧1)) = 𝑀𝐼𝑁(0.2, 0.2) 

= 0.2. 
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𝑀𝐼𝑁 (𝜇𝑅1
~

(𝑥1, 𝑦3), 𝜇𝑅2
~

(𝑦3, 𝑧1)) = 𝑀𝐼𝑁(0, 0.8) = 0 

𝑀𝐼𝑁 (𝜇𝑅1
~

(𝑥1, 𝑦4), 𝜇𝑅2
~

(𝑦4, 𝑧1)) = 𝑀𝐼𝑁(1, 0.4) = 0.4 

𝑀𝐼𝑁 (𝜇𝑅1
~

(𝑥1, 𝑦5), 𝜇𝑅2
~

(𝑦5, 𝑧1)) = 𝑀𝐼𝑁(0.7, 0) = 0 

𝑀𝐴𝑋
𝑦𝑖
[𝑀𝐼𝑁( 𝜇𝑅1

~

(𝑥𝑖, 𝑦𝑖), 𝜇𝑅2
~

(𝑦𝑖 , 𝑧𝑖))] 

= 𝑀𝐴𝑋{0.1, 0.2, 0, 0.4, 0} = 0.4. 

Now let (𝑥, 𝑧) = (𝑥1, 𝑧2) 

𝑀𝐼𝑁 (𝜇𝑅1
~

(𝑥1, 𝑦1), 𝜇𝑅2
~

(𝑦1, 𝑧2)) = 𝑀𝐼𝑁(0.1, 0) = 0, 

𝑀𝐼𝑁 (𝜇𝑅1
~

(𝑥1, 𝑦2), 𝜇𝑅2
~

(𝑦2, 𝑧2)) = 𝑀𝐼𝑁(0.2, 1) = 0.2,…… .. 

and so on.  The results are given in Figure 12.2. 

Example 3: 

In Figure 12.3 an example of the composition of three relations is presented. 

 

Figure 12.3 
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 The max-min composition operation is associative, that is, 

(𝑅3
~
 ° 𝑅2

~
)° 𝑅1

~
= 𝑅3

~
 ° (𝑅2

~
° 𝑅1
~
). 

     On the other hand, if 𝑅
~

 is a relation defined on 𝐸 × 𝐸, then 𝑅
~
⊂ 𝐸 × 𝐸; one may write  

𝑅
~
°𝑅
~
= 𝑅

~

2. 

and from this 

𝑅
~
°𝑅
~

2 = 𝑅
~

2 ° 𝑅
~
= 𝑅

~

3; 

and more generally 

𝑅
~
°𝑅
~
°𝑅
~
……… . . °𝑅

~
= 𝑅

~

𝑘 . 

k times 

Max-star composition: 

 If we replace the operation ⋀ in  

𝜇𝑅1
~
 ° 𝑅2
~

(𝑥, 𝑧) =⋁[

𝑦

𝜇𝑅1
~

(𝑥, 𝑦)⋀𝜇𝑅2
~

(𝑦, 𝑧)]  

arbitrarily with another, under the restriction that one uses an operation, like  ⋀, that is 

associative and monotone nondecreasing in each argument.  One may then write 

𝜇𝑅1
~
 ° 𝑅2
~

(𝑥, 𝑧) =⋁[

𝑦

𝜇𝑅1
~

(𝑥, 𝑦)°𝜇𝑅2
~

(𝑦, 𝑧)]. 

Max-product composition: 

       Among the max-star compositions that may be imagined, the max-product 

composition deserves our particular attention.  In this case, the operation ° will be the 

product designated by ∙, the formula then becomes  

𝜇𝑅1
~
 ∙ 𝑅2
~

(𝑥, 𝑧) =⋁[

𝑦

𝜇𝑅1
~

(𝑥, 𝑦) ∙ 𝜇𝑅2
~

(𝑦, 𝑧)]. 

Ordinary subset of level 𝜶 in fuzzy relation 

      Let 𝛼 ∈ [0,1]; we shall call the ordinary subset of level 𝛼 of a fuzzy relation  𝑅
~
⊂ 𝑋 ×

𝑌, the ordinary subset 

𝐺𝛼 = {(𝑥, 𝑦)| 𝜇𝑅
~
(𝑥, 𝑦) ≥ 𝛼}.  
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Example 1: (Figure 12.4) 

 Figure 12.4 

𝐺0.8 = { (𝑥1, 𝑦2),  (𝑥1, 𝑦3),  (𝑥2, 𝑦2),  (𝑥2, 𝑦4),  (𝑥3, 𝑦1)}.  

Example 2: 

 Consider the fuzzy relation defined in 𝑅2 by 

𝜇𝑅
~
(𝑥, 𝑦) = 1 −

1

1 + 𝑥2 + 𝑦2
. 

The subset of level 0.3 will be defined by  

1 −
1

1 + 𝑥2 + 𝑦2
≥ 0.3 

Thus,  

𝑥2 + 𝑦2 ≥
3

7
. 

This subset is the exterior and circumference of the circle with radius 𝑟 = √3/7.  (See 

Figure 12.5). 

 

Figure 12.5 

Important Property: 

 One now has the evident property 

𝛼1 ≥ 𝛼2 ⇒ 𝐺𝛼1 ⊂ 𝐺𝛼2 . 
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Or, what is the same thing,  

𝑅𝛼1 ⊂ 𝑅𝛼2 . 

Decomposition Theorem: 

        Any fuzzy relation 𝑅
~

 may be decomposed in the form  

𝑅
~
=⋁𝛼 ∙

𝛼

𝑅𝛼 , 0 < 𝛼 ≤ 1 

where  

𝜇𝑅𝛼
~

(𝑥, 𝑦) = 1 𝑖𝑓  𝜇𝑅
~
(𝑥, 𝑦) ≥ 𝛼 

                  = 0 𝑖𝑓 𝜇𝑅
~
(𝑥, 𝑦) < 𝛼 

Here 𝛼 𝑅𝛼 indicates that all the elements of the ordinary relation 𝑅𝛼 are multiplied by 𝛼. 

Proof: 

      The membership function of  

𝑅
~
=⋁𝛼 ∙

𝛼

𝑅𝛼 , 0 < 𝛼 ≤ 1 

may be written as 𝜇⋁ 𝛼∙𝛼 𝑅𝛼 = ⋁ 𝛼𝛼 𝜇𝑅𝛼
~

(𝑥, 𝑦) 

= ⋁ 𝛼

𝛼≤𝜇𝑅
~
(𝑥,𝑦)

 

= 𝜇𝑅
~
(𝑥, 𝑦). 

 

13. FUZZY SUBSET INDUCED BY A MAPPING 

 Consider a mapping of set 𝐸1 into a set 𝐸2, denote  

𝐸1  𝐸2𝛤
↝  

where, if 𝑥 ∈ 𝐸1 and y ∈ 𝐸2, 

𝑦 ∈ 𝜞{𝒙} 

Let 𝜇 ~𝐴(𝑥) be the membership function of a fuzzy subset  ~
𝐴 ⊂ 𝐸1; then the mapping Γ 

induces 𝐸2 a fuzzy subset  ~
𝐵 ⊂ 𝐸2  whose membership function is 

𝜇 ~𝐵(𝑦) = max
𝑥∈ 𝛤−1(𝑦)

{𝜇 ~𝐴(𝑥)}, 𝑖𝑓  𝛤
−1(𝑦) ≠ ∅  

= 0               , 𝑖𝑓  𝛤−1(𝑦) = ∅ 

Example 1: 

Let 𝐸1 = {𝑥1, 𝑥2, 𝑥3, 𝑥4,  𝑥5,  𝑥6, 𝑥7}  and 𝐸2 = {𝑦1, 𝑦2, 𝑦3, 𝑦4}. 
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Consider a mapping such that 

𝛤{𝑥1} = {𝑦2}, 

𝛤{𝑥2} = {𝑦1, 𝑦4}, 

𝛤{𝑥3} = {𝑦1}, 

𝛤{𝑥4} = {𝑦3}, 

𝛤{𝑥5} = {𝑦1}, 

𝛤{𝑥6} = {𝑦2}, 

𝛤{𝑥7} = {𝑦4}. 

Also consider the inverse mapping 𝛤−1: 

𝛤−1(𝑦1) = {𝑥2, 𝑥3,  𝑥5}, 

𝛤−1(𝑦2) = {𝑥1, 𝑥6}, 

𝛤−1(𝑦3) = {𝑥4}, 

𝛤−1(𝑦4) = {𝑥2, 𝑥7}. 

       And finally consider the fuzzy subset  ~
𝐴 ⊂ 𝐸1 ∶ 

 ~
𝐴 = {(𝑥1|0.3), (𝑥2|0.7), (𝑥3|1), (𝑥4|0), (𝑥5|0.2), (𝑥6|0.9), (𝑥7|0.8)}.  

One then has  

𝜇 ~𝐵(𝑦1) = max
{𝑥2,𝑥3, 𝑥5}

(0.7; 1; 0.2) = 1, 

𝜇 ~𝐵(𝑦2) = max
{𝑥1,𝑥6}

(0.3; 0.9) = 0.9, 

𝜇 ~𝐵(𝑦3) = max{𝑥4}
(0) = 0, 

𝜇 ~𝐵(𝑦2) = max
{𝑥2,𝑥7}

(0.7; 0.8) = 0.8. 

These results have been portrayed in Figure 13.1 

 

Figure 13.1 
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 It is interesting to compare this notion with the corresponding one for ordinary 

subsets.  Consider Figure 13.2 

 

Figure 13.2 

Let  

𝐸1 = {𝑥1, 𝑥2, 𝑥3, 𝑥4,  𝑥5,  𝑥6,   𝑥7,    𝑥8},  

and 

𝐸2 = {𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5}. 

𝛤{𝑥4,  𝑥5,  𝑥6,   𝑥8} = {𝑦1, 𝑦2, 𝑦3}. 

To the subset  𝐴 = { 𝑥4,  𝑥5,  𝑥6,    𝑥8},  the mapping 𝛤 associates the subset 𝐵 =

{𝑦1, 𝑦2, 𝑦3}. 

Example 2: 

      Let 𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅, where R is the set of real numbers.  We consider the fuzzy subset  ~
𝐴 

defined by “x near 
(4𝑘+1)𝜋

2
, 𝑘 = ⋯…… . , −2,−1, 0, 1, 2,……… ".  We consider also the 

function  

𝑦 = 𝑓(𝑥) = 𝑠𝑖𝑛𝑥; 

then the fuzzy subset   ~
𝐵 induced by f(x) will be 

 

Figure 13.3 
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14. CONDITIONED FUZZY SUBSETS 

A fuzzy subset (𝑥)~
𝐵 ⊂E2will be said to be conditioned on E1 if its membership 

function depends on x ∈ E1 as a parameter. 

The conditional membership function will then be written 

𝜇  ~
𝐵  (y || x) , where 𝑥 ∈ 𝐸1 and 𝑦 ∈ 𝐸2 

This function defines a mapping of 𝐸1 into the set of fuzzy subsets defined on 𝐸2. Thus, a 

fuzzy subset  
𝐴
~
⊂ 𝐸1, will induce a fuzzy subset

𝐵
~
⊂ 𝐸2, whose membership function will 

be 

𝜇  ~
𝐵  (y) = (𝑀𝐼𝑁 |𝜇  ~

𝐵 (𝑦||𝑥), 𝜇  ~
𝐴 (𝑥))𝑥∈𝐸1

𝑀𝐴𝑋  

We immediately see an example. 

Example. Consider a fuzzy relation existing between 

𝐸1 = {𝑥1, 𝑥2, … , 𝑥6}  ,  

𝐸2 = {𝑦1, 𝑦2, 𝑦3} 

and defined by 

 

This relation 
𝑅
~
expresses a conditional membership function 

𝜇  ~
𝐵  (y || x) 

Thus 

𝜇  ~
𝐵  (𝑦3|| 𝑥3) = 0.4 

Suppose that one has a fuzzy subset
𝐴
~
𝑜𝑓 𝐸1defined by 

𝐴
~
 = {(𝑥1|0.5), (𝑥2|0.2), (𝑥3|0.8), (𝑥4|1), (𝑥5|0.7) , (𝑥6| 0)}, 
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To this fuzzy subset
𝐴
~
⊂ 𝐸1, corresponds a fuzzy subset in 𝐸2, say 

𝐵
~
⊂ 𝐸2. We carry out the 

calculations. 

First we calculate𝜇  ~
𝐵 (𝑦1)One has 

    MIN [𝜇  ~
𝐵 (𝑦1 || 𝑥1) , 𝜇  ~

𝐴 (𝑥1 )] 

     = MIN [0.3 , 0.5]  = 0.3. 

    MIN [𝜇  ~
𝐵 (𝑦1 || 𝑥2) , 𝜇  ~

𝐴 (𝑥2 )] 

     = MIN [0.2 , 0.2]  = 0.2. 

    MIN [𝜇  ~
𝐵 (𝑦1 || 𝑥3) , 𝜇  ~

𝐴 (𝑥3 )] 

     = MIN [1 , 0.8]  = 0.8. 

    MIN [𝜇  ~
𝐵 (𝑦1 || 𝑥4) , 𝜇  ~

𝐴 (𝑥4 )] 

     = MIN [0 , 1]  = 0. 

    MIN [𝜇  ~
𝐵 (𝑦1 || 𝑥5) , 𝜇  ~

𝐴 (𝑥5 )] 

     = MIN [0.3 , 0.7]  = 0.3. 

    MIN [𝜇  ~
𝐵 (𝑦1 || 𝑥6) , 𝜇  ~

𝐴 (𝑥6 )] 

     = MIN [0.8 , 0]  = 0 

Then 

   MAX MIN [𝜇  ~
𝐵 (𝑦1 || 𝑥𝑖) , 𝜇  ~

𝐴 (𝑥𝑖 )] 

     = MAX [0.3 o.2 , 0.8 , 0 , 0.3 ,0] 

     = 0.8.  

One should then do the same for 𝑦2, then 𝑦3. One will finally obtain 

  𝜇  ~
𝐵 (𝑦1) = 0.8   ,  𝜇  ~

𝐵 (𝑦2) = 1𝜇  ~
𝐵 (𝑦3) = 0.8 

Thus, 

                =~
𝐵  {(𝑦1| 0.8) , (𝑦2|1) , (𝑦3|0.8) } 
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Another presentation of this concept. The expression (15.2), as we shall see later, plays for 

fuzzy subsets the same role as the notion of function for the elements of formal sets. The 

notion of function for these elements may be expressed by the phrase: "if x = a, then y = b 

by the function f," which may be written 

                                                  x       𝑓
↝   y 

or likewise 

                                      y = f(x). 

The notion of conditioned fuzzy subsets plays exactly the same role, but instead of 

considering elements 𝑥 ∈ 𝐸1, 𝑦 ∈ 𝐸2 and the relation f, which is a function, one will make 

the following definition. 

    Let ⊂ 𝐸1~
𝑋  and ⊂ 𝐸2~

𝑌 consider the fuzzy relation  ~
𝑅  existing between𝐸1 𝑎𝑛𝑑 𝐸2. One then 

defines: If =  ~
𝐴

~
𝑋 , then =   ~

𝐵
~
𝑌 through the relation  ~

𝑅 ; this may be written: 

    ~
𝐴 ;      ~𝑅

↝   ~
𝐵 ; 

If 𝜇  ~
𝐵 (𝑥, 𝑦)is the membership function of the fuzzy relation  ,~

𝑅 𝜇   ~
𝐴 that of  ~

𝐴 , and 

𝜇  ~
𝐵 (𝑥)that of  ~

𝐵 , one sees that then 

𝜇  ~
𝐵 (𝑦) = (𝑀𝐼𝑁 |𝜇  ~

𝐴 (𝑥), 𝜇  ~
𝐴 (𝑥, 𝑦))𝑥∈𝐸1

𝑀𝐴𝑋  

         = V |𝜇  ~
𝐴 (𝑥) ∧ 𝜇  ~

𝐴 (𝑥, 𝑦)| 

This constitutes another presentation of conditioned fuzzy subsets. We consider an 

example using this presentation. 

Example 1. 

𝐸1 = {𝑥1, 𝑥2, 𝑥3} 

                 =~
𝐴 {(𝑥1|0.3), (𝑥2|0.7) , (𝑥3|1)} 

  𝐸2 = {𝑦1, 𝑦2, 𝑦3 , 𝑦4 , 𝑦5} 

Figure 14.1 

We present =~
𝐴 {(𝑥1|0.3), (𝑥2|0.7) , (𝑥3|1)}  as follows: 



75 
 

 

Figure 14.2 

We now carry out the operation min for all the elements of the row with the 

column y1 of ; this gives 

 

Figure 14.3 

Carrying out the operation max on the elements of the column obtained, we have 

0,3 v 0,7 v 0,2 = 0,7. 

Thus, 𝜇  ~
𝐵 (𝑦1) = 0.7. 

Doing the same between the elements of Fig. 14.2 and the other columns of 14.1, we have, 

𝜇  ~
𝐵 (𝑦2) = 0.3     , 𝜇  ~

𝐵 (𝑦3) = 0.7 ,      𝜇  ~
𝐵 (𝑦4) = 0.4,         𝜇  ~

𝐵 (𝑦5) = 1. 

And finally 

 ~
𝐵 = {(𝑦1|0.7), (𝑦2|0.3) , (𝑦3|0.7), (𝑦4|0.4) , (𝑦5|1)}, 

or what is the same  

 

15. PROPERTIES OF FUZZY BINARY RELATIONS 

 We shall consider the case where  

𝐸1 = 𝐸2 = 𝐸 𝑎𝑛𝑑 𝑀 = [0,1], 

and occupy ourselves with some properties of fuzzy binary relations in 𝐸 × 𝐸. 
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Example 1: Let 

𝐸 = {𝐴, 𝐵, 𝐶,𝐷, 𝐸}, 

𝑀 = {0, 1}. 

 

Figure 15.1 

The table or matrix in Figure 15.1 represents a fuzzy relation in 𝐸 × 𝐸. 

Example 2:  

 Let R be the set of real numbers, and let 𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅, then 

|𝑦| ≫ |𝑥| 

is a fuzzy binary relation   ~
𝑅 in 𝑅 × 𝑅 provided one is given 𝜇  ~

𝑅 (𝑥, 𝑦) defined above, for all 

(x,y). 

Symmetry : 

          A symmetric fuzzy binary relation is defined by  

∀ (𝑥, 𝑦) ∈ 𝐸 × 𝐸: ( 𝜇   ~
𝑅 (𝑥, 𝑦) = 𝜇) ⇒ ( 𝜇   ~

𝑅 (𝑦, 𝑥) = 𝜇). 

Example :  See Figure 15.2 

Figure 15.2 
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Another example : Let R be the set of real numbers, and let 𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅; then the relation  

𝑦 𝑖𝑠 𝑛𝑒𝑎𝑟 𝑥 

intuitively is a fuzzy symmetric relation in R× 𝑅. 

Reflexivity : This property is defined by  

∀ (𝑥, 𝑥) ∈ 𝐸 × 𝐸: 𝜇   ~
𝑅 (𝑥, 𝑥) = 1. 

Example : See Figure 15.3 

 

Figure 15.3 

Another example : y is near x, in the example given for symmetry is reflexive. 

Transitivity : 

Let 𝑥, 𝑦, 𝑧 ∈ 𝐸; then ∀ (𝑥, 𝑦), (𝑦, 𝑧), (𝑥, 𝑧) ∈ 𝐸 × 𝐸: 

𝜇   ~
𝑅 (𝑥, 𝑧) ≥ 𝑀𝐴𝑋

𝑦
{𝑀𝐼𝑁 (𝜇   ~

𝑅 (𝑥, 𝑦), 𝜇   ~
𝑅 (𝑦, 𝑧))}. 

This relation defines the property of transitivity of a fuzzy relation.  Such a relation may 

also be written using the notation  

𝜇   ~
𝑅 (𝑥, 𝑧) ≥ ⋁

𝑦
{(𝜇   ~

𝑅 (𝑥, 𝑦)⋀ 𝜇   ~
𝑅 (𝑦, 𝑧))} 

where, we recall, ⋁ is a symbol signifying “maximum of” and ⋀ is a symbol signifying 

“minimum of”. 

Example : 

 Figure 15.4  
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Example : Consider the relation 𝑥   ~
𝑅 𝑦, where 𝑥, 𝑦 ∈ 𝑀,𝑤𝑖𝑡ℎ 

𝜇   ~
𝑅 (𝑥, 𝑦) = 0    ,     𝑦 < 𝑥, 

                    = 𝑒−𝑥    , 𝑦 ≥ 𝑥. 

The matrix of this relation is presented in Figure 15.5.  Figure 15.6 shows the 

results of calculating the right-hand member of  

𝜇   ~
𝑅 (𝑥, 𝑧) ≥ ⋁

𝑦
{(𝜇   ~

𝑅 (𝑥, 𝑦)⋀ 𝜇   ~
𝑅 (𝑦, 𝑧))} 

By comparing the two figures we may verify that the above relation is satisfied for all 

pairs.  This relation is transitive. 

    

Figure 15.5                                       Figure 15.6 

 

16. TRANSITIVE CLOSURE OF A FUZZY BINARY RELATION 

Letℛ be a fuzzy relation in 𝐸 ×  𝐸 then define 

ℛ2 = ℛ ∘ ℛ, 

by 

𝜇ℛ(𝑥, 𝑧) = MAX
𝑦
[𝑀𝐼𝑁 (𝜇ℛ(𝑥, 𝑦), 𝜇ℛ(𝑦, 𝑧))] 

where𝑥, 𝑦, 𝑧 ∈  𝐸 The expression (17.2) may be rewritten 

𝜇ℛ2(𝑥, 𝑧) = ∨
𝑦
[𝜇ℛ(𝑥, 𝑦) ∧ 𝜇ℛ(𝑦, 𝑧)] 

Property (16.8) or (16.9) defining transitivity may also be presented in the following 

fashion: 

ℛ ∘ ℛ ⊂ ℛ 
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Suppose 

ℛ2 ⊂ ℛ. 

and also that 

ℛ𝑘+1 ⊂ ℛ, 𝑘 = 1,2,3,…. 

Then also, evidently, 

ℛ𝑘 ⊂ ℛ, 𝑘 = 1,2,3,…. 

We shall call the transitive closure of a fuzzy binary relation the relation 

ℛ̂ = ℛ ∪ ℛ2 ∪ ℛ3 ∪ …. 

Theorem 1. The transitive closure of any fuzzy binary relation in a transitive binary 

relation. 

Proof. According to (17,8), we may write 

ℛ̂2 = ℛ̂ ∘ ℛ̂ = ℛ ∪ ℛ2 ∪ ℛ3 ∪ …. 

Then, comparing (17,8) and (17,9), we may write 

ℛ̂2 ⊂ ℛ̂ 

which provesℛ that is transitive. 

To summarize, we have the following properties: 

(ℛ ⊃ ℛ2) ⇔ (ℛ = ℛ̂) ⇔ (ℛ 𝑖𝑠 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒), 

(ℛ = ℛ2) ⇔ (ℛ = ℛ̂) ⇔ (ℛ 𝑖𝑠 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒) 

Remark. Theorem I gives the means for constructing a transitive relation from any 

relation. Such a synthesis may have interest. 

Theorem II. Let ℛ be any fuzzy hinary relation. If, for some k, one has 

ℛ𝑘+1 = ℛ𝑘 

then 

ℛ̂ = ℛ ∪ ℛ2 ∪ ℛ3 ∪ …∪ ℛ𝑘. 

We shall note that the reverse is not true. 

Proof. The proof is almost trivial. One has 

ℛ̂ = ℛ ∪ ℛ2 ∪ …∪ ℛ𝑘 ∪ ℛ𝑘+1 ∪ ℛ𝑘+2 ∪ … 

= ℛ ∪ ℛ2 ∪ …∪ ℛ𝑘 ∪ ℛ𝑘 ∪ ℛ𝑘 ∪ …     

= ℛ ∪ ℛ2 ∪ …∪ ℛ𝑘 

We shall prove later that, if ℛ ⊂ 𝐸 × 𝐸, where 𝐸 is finite and 𝑐𝑎𝑟𝑑(𝐸) = 𝑛, then 

ℛ̂ = ℛ ∪ ℛ2 ∪ …∪ ℛ𝑛 

and there exists a 𝑘 defined by (17,14) such that 𝑘 ≤ 𝑛; 
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We consider several examples,  

Example 1. Consider the relation ℛ given in Figure 17.la. One may calculate 

ℛ2(Figure 17.1b), then ℛ3 (Figure 17.1c). We see thatℛ3 = ℛ2; one may then stop there, 

andℛ is given in Figure 17.1d. 

 

Fig. 16.1 

In Figure 17.2 we have verified that 

ℛ̂2 ⊂ ℛ̂ 

 

Fig. 16.2 
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Example 2. In the example presented in Figure 17.3, we have a relationℛ that is 

transitive, By carrying out the calculations in the same order as the above, one sees that 

ℛ̂ = ℛ 

 

Fig. 16.3 

Example 3. Consider the relation 𝑥ℛ𝑥, where 𝑥, 𝑦 ∈  𝑁 with 

𝜇ℛ(𝑥, 𝑦) = 𝑒
−𝑘𝑥𝑦 , 

with𝑘 > 1 sufficiently large so that this membership function expresses the relation "x and 

y are both rather small nonnegative integers."† For a matrix representation of this relation, 

one has 
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†One may say for this that among the two elements of the ordered pair (x,y) there is at leas 

that is rather small, 

Calculation of ℛ2 gives 

 

Thus, sinceℛ2 ⊃ ℛ instead of ℛ2 ⊂ ℛ, this fuzzy relation is not transitive. 

A similar and easy proof would show that it is the same if 𝑥, 𝑥 ∈ 𝑅+ instead of 𝑁.  

We shall return in Section 29, as promised in Section 15, to the case where 𝐸 is not 

finite. 

Example 4. We return to the case of a relation ℛ ⊂ 𝐸 × 𝐸, where 𝐸 is finite. This 

is done in order to make it clear that one does not always have the favorable case (17.13). 

But we shall go on to show also from this example a very interesting phenomenon. 

In Figure 17.4 we have given a relationℛ and successively calculated ℛ2, ℛ3, …. 

One notices that this does not converge; there does not exist a fixed 𝑘 after which ℛ𝑘+1 =

ℛ𝑘. 

Fortunately, thanks to (17.16) we know that we may stop at 𝑘 = 3. And then one 

obtains ℛ easily. 

But, if the reader considers attentively all the relations obtained, he sees that for 

𝑘 >  3, we have 

ℛ4 = ℛ6 = ⋯ = ℛ2𝑟 = ℛ2𝑟+2 = ⋯ = ℛ𝑝 

ℛ5 = ℛ7 = ⋯ = ℛ2𝑟+1 = ℛ2𝑟+3 = ⋯ = ℛ𝑗 
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Thus there appears a cyclic phenomenon that would be interesting to study. We 

lack room here to study "cyclic fuzzy relations," which we leave with these remarks, but 

we commend these to the reader who perhaps finds himself interested. 

 

Fig. 16.4 

Remark. One may ask the following interesting question: Does the composition of 

two transitive relations ℛ1 and ℛ2 always give a relation ℛ1 ∘ ℛ2 and/orℛ2 ∘ ℛ1 that is 

transitive? This is, unfortunately, not the case, as the following counterexample shows: 

Example. Let ℛ1 be as given in (17.24); by checking the property ℛ1
2 ⊂ ℛ1 one 

may verify that this relation is indeed transitive: 
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Let ℛ2, be as in (17.25), by checking the property ℛ2
2 ⊂ ℛ2,one verifies that this relation 

also is transitive: 

 

We now calculate ℛ2 ⊂ ℛ1: 

 

And (ℛ2 ∘ ℛ1)
2
 

 

The relation (ℛ2 ∘ ℛ1)
2
⊂ ℛ2 ∘ ℛ1 is certainly verified. 

 We now calculate ℛ1 ∘ ℛ2 
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And (ℛ1 ∘ ℛ2)
2
: 

 

One sees that we do not have(ℛ1 ∘ ℛ2)
2
⊂ ℛ1 ∘ ℛ2, and it follows that ℛ1 ∘ ℛ2 

not transitive.  

Thus, the composition of two tramitive relations will not always give a transitive 

relation. 

17. A PATH IN A FINITE FUZZY GRAPH 

We shall consider in the finite graph 𝐺 ⊂ 𝐸 × 𝐸 an ordered tuple with or without 

repetition†. 

𝐶 = (𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖𝑟) 

where the 𝑥𝑖𝑘 ∈ 𝐸, 𝑘 = 1,2,… , 𝑟 and with the condition 

∀(𝑥𝑖𝑘 , 𝑥𝑖𝑘+1): 𝜇ℛ(𝑥𝑖𝑘 , 𝑥𝑖𝑘+1) > 0, 𝑘 = 1,2,… , 𝑟 − 1 

Such an ordered 𝑟-tuple will be called a path from 𝑥𝑖1 to 𝑥𝑖𝑟 in the graph𝐺 (one also 

says in the relationℛ 

With each path (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑟) we shall associate a value defined by 

𝑙(𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖𝑟) = 𝜇ℛ(𝑥𝑖1 , 𝑥𝑖2) ∧ 𝜇ℛ(𝑥𝑖2, 𝑥𝑖3) ∧ …∧ 𝜇ℛ(𝑥𝑖𝑟−1 , 𝑥𝑖𝑟) 
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 We now consider all possible paths existing between𝑥𝑖and 𝑥𝑗, two arbitrary 

elements of 𝐸; let𝐶(𝑥𝑖, 𝑥𝑗) be the ordinary set of all such paths: 

𝐶(𝑥𝑖, 𝑥𝑗) = {𝑐(𝑥𝑖, 𝑥𝑗)𝑐(𝑥𝑖, 𝑥𝑗) = (𝑥𝑖1 = 𝑥𝑖, 𝑥𝑖2, 𝑥𝑖𝑟−1, 𝑥𝑖𝑟 = 𝑥𝑗)} 

We shall define the strongest path 𝐶∗(𝑥𝑖, 𝑥𝑗) from 𝑥𝑖 to 𝑥𝑗 by 

𝑙∗(𝑥𝑖, 𝑥𝑗) = ∨
𝐶(𝑥𝑖,𝑥𝑗)

𝑙(𝑥𝑖1 = 𝑥𝑖, 𝑥𝑖2, … , 𝑥𝑖𝑟−1, 𝑥𝑖𝑟 = 𝑥𝑗) 

Also, the number of elements less one constituting a path will be called the length of the 

path. 

Before giving several examples, we consider various theorems.  

Theorem I.Let ℛ ⊂ 𝐸 × 𝐸; then one has 

∀(𝑥, 𝑦) ∈ 𝐸 × 𝐸: 𝜇ℛ𝑘(𝑥, 𝑦) = 𝑙𝑘
∗(𝑥, 𝑦), 

where𝑙𝑘
∗(𝑥, 𝑦) is the strongest path existing from 𝑥 to𝑦 of length 𝑘. 

Proof. The result is immediate, it suffices to consider (18,4) and (18.3) on the one 

hand, and from there the compositionℛ ∘ ℛ ∘ … ∘ ℛ. It is in fact the same max-min 

operation presented in two different fashions.  

†In other words, may be less than, equal to, or greater than card E. depending on the case. 

Theorem II. Letℛ ⊂ 𝐸 × 𝐸andℛ̂ be the transitive closure of ℛ; then one has 

∀(𝑥, 𝑦) ∈ 𝐸 × 𝐸: 𝜇ℛ̂(𝑥, 𝑦) = 𝑙
∗(𝑥, 𝑦) 

Proof. It suffices to review the definitions ofℛ̂ and of 𝑙∗(𝑥, 𝑦). 

Theorem III.Let𝑛 = 𝑐𝑎𝑟𝑑 𝐸; if 𝑘 is the length of a path from 𝑥𝑖 to𝑥𝑗, with 𝑘 >

𝑛 = 𝑐𝑎𝑟𝑑 𝐸, then all the elements of the chain are not unique, there is at least one "circuit" 

(closed path) in the path. If one removes this for these) circuit(s), the resulting path has a 

length less than or equal to n; one may also state 

𝑙𝑘
∗(𝑥, 𝑦) = 𝑙𝑖≤𝑛

∗ (𝑥, 𝑦) 

where𝑙𝑖≤𝑛
∗ (𝑥, 𝑦) is the value of the strongest path of length less than or equal to𝑛 from 

𝑥to𝑦. 
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Proof. After removing the circuits there remains a chain that has at most length 𝑛; 

relation (15,7) is then verified, 

Theorem IV.† If ℛ ⊂ 𝐸 × 𝐸and 𝑛 = 𝑐𝑎𝑟𝑑 𝐸, then 

ℛ̂ = ℛ ∪ ℛ2 ∪ …∪ ℛ𝑛 

 Proof. This follows immediately from Theorem II [see (18,6)]. 

Example. We consider the relation ℛ represented in Figure 18.1. The results 

presented in Figure 17,2 will be used in our explanations, Let (B, C, A, D) be a path. We 

calculate its value: 

 

(a)                               (b) 

(the ordered pairs (𝑥, 𝑦) such that𝜇ℛ(𝑥, 𝑦) = 0 have not been represented) 

Fig. 17.1 

 

 

Fig. 17.2 
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𝑙(𝐵, 𝐶, 𝐴, 𝐷) = 𝜇ℛ(𝐵, 𝐶) ∧ 𝜇ℛ(𝐶, 𝐴) ∧ 𝜇ℛ(𝐴, 𝐷) 

= 1 ∧ 0,7 ∧ 0,3 = 0,3. 

Now we examine all paths† from B to D whose length is less than or equal to 3; these are 

only the paths (𝐵, 𝐷), (𝐵,𝐷,𝐷), (𝐵, 𝐷, 𝐷,𝐷), for which we have 

𝑙(𝐵,𝐷) = 𝜇ℛ(𝐵,𝐷) = 0,4, 𝐿(𝐵, 𝐷,𝐷) = 𝜇ℛ(𝐵, 𝐷) ∧ 𝜇ℛ(𝐷,𝐷) = 0,4 ∧ 1 = 0,4 

†One knows how to carry out such an enumeration in an automatic fashion, without 

omission and without repetition, See, for example, the references [1K.2K] 

𝑙(𝐵, 𝐷,𝐷, 𝐷) = 𝜇ℛ(𝐵, 𝐷) ∧ 𝜇ℛ(𝐷, 𝐷) ∧ 𝜇ℛ(𝐷,𝐷) = 0,4 ∧ 1 ∧ 1 = 0,4 

One then has 

𝑙∗(𝐵,𝐷) = 𝑙(𝐵, 𝐶, 𝐴, 𝐷) ∨ 𝑙(𝐵,𝐷) ∨ 𝑙(𝐵, 𝐷,𝐷) ∨ 𝑙(𝐵, 𝐷,𝐷, 𝐷) 

= 0,3 ∨ 0,4 ∨ 0,4 ∨ 0,4 = 0,4                           

If we locate ℛ in Figure 17.2g, we find 

𝜇ℛ̂(𝐵,𝐷) = 0,4 (𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝐼𝐼 − 17.6) 

On the other hand, there are two paths of length 3 between 𝐵and 𝐷; these 

are(𝐵, 𝐶, 𝐴, 𝐷) and(𝐵 𝐷, 𝐷, 𝐷) One then has 

𝑙∗(𝐵,𝐷) = 𝑙(𝐵, 𝐶, 𝐴,𝐷) ∨ 𝑙(𝐵, 𝐷, 𝐷,𝐷) 

= 0,3 ∨ 0,4 = 0,4       

One verifies with† 

𝜇ℛ3(𝐵, 𝐷) = 0,4 (𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝐼 − 1.5) 

Now consider the path (𝐶, 𝐴, 𝐵, 𝐷, 𝐴, 𝐷). This path possesses a circuit (𝐷, 𝐴,𝐷) 

eliminating this we see 

𝑙5
∗(𝐶, 𝐷) = 𝑙𝑖≤4

∗ (𝐶,𝐷) 

                                                                        = 𝑙1
∗(𝐶, 𝐷) ∨ 𝑙2

∗(𝐶, 𝐷) ∨ 𝑙3
∗(𝐶,𝐷) ∨ 𝑙4

∗(𝐶,𝐷) 

                                                                                   

= 𝜇ℛ(𝐶,𝐷) ∨ 𝜇ℛ2(𝐶, 𝐷) ∨ 𝜇ℛ3(𝐶, 𝐷) ∨ 𝜇ℛ4(𝐶, 𝐷) 

                                     = 0 ∨ 0,3 ∨ 0,4 ∨ 0,4 = 0,4 

One may have expected to find 0,3; but the strongest path of length 5 between 

𝐶and 𝐷 is not (𝐶, 𝐴, 𝐵, 𝐷, 𝐴, 𝐷) but (𝐶, 𝐴, 𝐵,𝐷, 𝐷, 𝐷), these two, moreover, reduce to 

(𝐶, 𝐴, 𝐵, 𝐷) when the circuits are eliminated. All this may be seen clearly in Figure 18.1b. 

Notion of a path defined with respect to other operators.Max-star transitivity. 

The value defined with the aid of expression (18.3) may be extended, in its definition, to 
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operators other than ∧, under the restriction that those considered have the properties of 

associativity and monotonicity. If∗ is such an operator, one then sees 

𝑙(𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖𝑟) = 𝜇ℛ(𝑥𝑖1 , 𝑥𝑖2) ∗ 𝜇ℛ(𝑥𝑖2, 𝑥𝑖3) ∗ … ∗ 𝜇ℛ(𝑥𝑖𝑟−1 , 𝑥𝑖𝑟) 

In particular, if is the product operator, denoted and defined by (12.35), one sees 

𝑙(𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖𝑟) = 𝜇ℛ(𝑥𝑖1 , 𝑥𝑖2). 𝜇ℛ(𝑥𝑖2, 𝑥𝑖3). … . 𝜇ℛ(𝑥𝑖𝑟−1 , 𝑥𝑖𝑟) 

Due to the property 

𝑎, 𝑏 ≤ 𝑎 ∧ 𝑏 𝑖𝑓 𝑎, 𝑏 ∈ [0,1]. 

†One finds here that 𝑙3
∗(𝐵, 𝐷) = 𝑙∗(𝐵, 𝐷), but this is fortuitious-the relations ℛ3 and ℛ̂  

being different (see Figures 15.2d and 17.2g). 

UNIT III 

FUZZY RELATIONS 

18. RELATION OF FUZZY PREORDER 

A binary fuzzy relation that is 

(1) Transitive [(16.9)] 

(2) Reflexive [(16.7)] 

is a relation of fuzzy preorder. 

First we consider an important theorem. 

Theorem I. If ℛ is transitive and reflexive (that is, is a preorder), then 

Proof. It suffices to review the definition of transitivity [(16.9) and (17.5)] and to show 

If one asserts that 

Since 

One has, according to (13.2) 

The right-hand member of (18.4) contains two equal terms 

(18.1) ℛ2 = ℛ, 𝑘 = 1,2,3,… 

(18.2) ℛ2 = ℛ, 

(18.3) ∀𝑥: 𝜇ℛ(𝑥, 𝑥) = 1 

 ℛ2 = ℛ2 ○ ℛ, 

(18.4) 𝜇ℛ2(𝑥, 𝑧) =⋁[𝜇ℛ(𝑥, 𝑥) ∧ 𝜇ℛ(𝑦, 𝑧)]

𝑦
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because 

Recall that ℛ is transitive (16.9), that is, 

it then results that𝜇ℛ(𝑥, 𝑦) is greater than or equal to the terms 𝜇ℛ(𝑥, 𝑦) ∧ 𝜇ℛ(𝑦, 𝑧) thisis 

then the value of the member on the right of (19.4), and one indeed has 

Theorem II. If ℛ is a preorder, then 

Proof. This is a corollary to Theorem I. It suffices to consider (16.8) and (18.8)together. 

Example 1. Figure 18.1 represents a preorder on 

One may verify transitivity with the aid of the relation 

Reflexivity is directly apparent from the presence of the ones on the principal diagonal.  

Finally, one may verify that one indeed has 

(18.5) 𝜇ℛ(𝑥, 𝑥) ∧ 𝜇ℛ(𝑥, 𝑧) = 𝜇ℛ(𝑥, 𝑧) ∧ 𝜇(𝑧, 𝑧) = 𝜇ℛ(𝑥, 𝑧) 

(18.6) 𝜇ℛ(𝑥, 𝑥) = 𝜇ℛ(𝑧, 𝑧) = 1                 reflexivity 

(18.7) 𝜇ℛ(𝑥, 𝑧) ≥⋁[𝜇ℛ(𝑥, 𝑦) ∧ 𝜇ℛ(𝑦, 𝑧)]

𝑦

 

(18.8) ℛ2 = ℛ,                        𝑄. 𝐸. 𝐷 

(18.9) ℛ = ℛ2 = ⋯ = ℛ𝑘 = ⋯ = ℛ̃ 

(18.10) 𝐸 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸} 

(18.11) ℛ2 ⊂ ℛ 

(18.12) ℛ2 = ℛ 



91 
 

 

Fig. 18.1 

Example 2. Consider a graph 𝐺 ⊂  𝐸 ×  𝐸. where 𝐸 is finite, and suppose that 𝐺 is 

reflexive, Then the binary fuzzy telation "there exists a path from x to yin 𝐺” (in the sense 

of the word path given in Section 18) is a preorder. 

Example 3. The fuzzy binary relation 𝑥ℛ𝑦 where 𝑥, 𝑦 ∈  𝑁 with 

is not a preorder because it is not transitive [see (16.12)]. 

Example 4. (Figure 18.2). 

Fig. 18.2 

(19.14) 0 ≤ 𝑎1 ≤ 𝑎2 ≤ ⋯ ≤ 𝑎𝑘 ≤ ⋯ ≤ 1this relation on a denumberably infinite set 𝐸 is 

a preorder. 

Fuzzy semipreorder. A transitive fuzzy relation that is not reflexive is called a 

semipreorder, or what is the same thing, a nonreflexive fuzzy preorder, 

(18.13) 𝜇ℛ(𝑥, 𝑦) = 𝑒
−𝑘(𝑥−𝑦)2 , 𝑤𝑖𝑡ℎ 𝑘 > 1 
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Example 1. The relation represented in Figure 18.3 is transitive but not reflexive; it is a 

semipreorder. 

 

Fig 18.3 

Example 2. The relation presented in Figure 16.7 is a semipreorder. 

Antireflexive fuzzy preorder. A particular case of a fuzzy semipreorder is that where 

One says then that the fuzzy preorder is antireflexive, 

Thus, the preorder relation presented in Figure 18.4 is antireflexive, 

Fig. 18.4 

19. RELATION OF SIMILITUDE 

A fuzzy binary relation that is 

(1) transitive (16.9) 

(2) reflexive (16.7) 

(3) symmetric (16.6) 

is called a relation of similitude or a fuzzy equivalence relation. It is evidently a preorder.  

First, we give several examples, 

Example 1. An example is presented in Figure 20.1. One may verify reflexivity 

and symmetry directly. In order to verify transitivity, it suffices to calculate ℛ2. One must 

then have, according to (19.9), 

(18.15) ∀𝑥 ∈ 𝐸: 𝜇ℛ(𝑥, 𝑥) = 0 
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Fig. 19.1 

Example 2. (Figare 19.2). If one takes 0 ≤ 𝑎 ≤ 1, then one has a similitude relation. 

 

Fig. 20.2 

Example 3. (Figure 19.3). If we suppose 

this is a similitude relation in an infinite set 𝐸. 

Fig. 19.3 

(19.1) ℛ2 = ℛ 

(19.2) 0 ≤ 𝑎1 ≤ 𝑎2 ≤ ⋯ ≤ 𝑎𝑘 ≤ ⋯ ≤ 1 
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Example 4. The fuzzy relations 𝑥ℛ𝑦 where 𝑥, 𝑦 ∈ 𝑅+ with 

is a similitude relation, as the reader is asked to verify in the Exercises (see also Section 29 

a little later). 

Theorem 1. Let ℛ ⊂ 𝐸 × 𝐸be a similitude relation. Let 𝑥, 𝑦, 𝑧 be three elements of 𝐸. Put 

Then 

In other words, of these three quantities a, b, and c at least two are equal and the third is 

greater than the other two. 

Proof. One already has by hypothesis 

We suppose that we have 

then (20.6) and (20.7) are verified, but (20.8) is not, and if one takes 𝑏 = 𝑎. the three 

relations are verified. 

Suppose that we have 

then (19,6) and (19.8) are verified, but (19.8) is not, and if one takes 𝑎 = 𝑏 the three 

relations are verified, 

One then may not have (19,9) nor (19.10), but on the contrary 

One could show in the same manner that one may not have𝑎 ≥ 𝑏 > 𝑐 or 𝑎 ≥ 𝑐 > 𝑏. 

 But 

(19.3) 𝜇ℛ(𝑥, 𝑦)
= 𝑒−𝑘(𝑦+1)     𝑦 < 𝑥, 𝑘 > 1
= 1                               𝑦 = 𝑥

= 𝑒−𝑘(𝑥+1)      𝑦 > 𝑥, 𝑘 > 1

 

(19.4) 

𝑐 = 𝜇ℛ(𝑥, 𝑧) = 𝜇ℛ(𝑧, 𝑥), 

𝑎 = 𝜇ℛ(𝑥, 𝑦) = 𝜇ℛ(𝑦, 𝑥), 

𝑏 = 𝜇ℛ(𝑦, 𝑧) = 𝜇ℛ(𝑧, 𝑦), 

(19.5) 𝑐 ≥ 𝑎 = 𝑏    𝑜𝑟    𝑎 ≥ 𝑏 = 𝑐     𝑜𝑟    𝑏 ≥ 𝑐 = 𝑎 

(19.6) 𝑐 ≥ 𝑎 ∧ 𝑏, 

(19.7) 𝑏 ≥ 𝑐 ∧ 𝑎, 

(19.8) 𝑎 ≥ 𝑏 ∧ 𝑐. 

(19.9) 𝑐 ≥ 𝑏 > 𝑎. 

(19.10) 𝑐 ≥ 𝑎 > 𝑏, 

(19.11) 𝑐 ≥ 𝑎 = 𝑏     ℎ𝑜𝑙𝑑𝑠. 

(19.12) 
𝑎 ≥ 𝑏 = 𝑐     ℎ𝑜𝑙𝑑𝑠. 
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One could show again in the same manner that one may not have 𝑏 ≥ 𝑐 > 𝑎 or 𝑏 ≥ 𝑎 > 𝑐, 

but 

Thus it is necessary that one always have at least two of the values equal.  

The inequalities (19.6) - (19.8) then give: 

If 𝑎 = 𝑏 

 If 𝑏 = 𝑐 

 If 𝑐 = 𝑎 

 

20. SUBRELATION OF SIMILITUDE IN A FUZZY PREORDER 

Let ℛ ⊂ 𝐸 × 𝐸 be a relation of fuzzy preorder. If there exists an ordinary subset 

𝐸1 ⊂ 𝐸 such that ∀𝑥, 𝑦 ∈ 𝐸1: 𝜇ℛ(𝑥, 𝑦) = 𝜇ℛ(𝑦, 𝑥), the elements of 𝐸1, form among 

themselves a similitude relation that we shall call a similitude subrelation in the preorder 

ℛ. 

We shall say that a similitude subrelation is maximal if there is no other similitude 

relation of the same nature in the relation being considered. 

 Suppose now that a preorder relation is such that each of the elements of the refer- 

ence set involved belongs to a maximal similitude subrelation and does not belong to any 

other. This may be rephrased: all the maximal subrelations are disjoint. In this case we call 

the subsets for which one has such disjoint maximal similitude subrelations similitude 

classes of the preorder. 

Thus, not all fuzzy preorders are decomposable into similitude classes. We shall 

consider several examples. 

(19.13) 𝑏 ≥ 𝑎 = 𝑐     ℎ𝑜𝑙𝑑𝑠. 

(19.14) 

𝑐 ≥ 𝑎 ∧ 𝑏, 

𝑏 = 𝑐 ∧ 𝑎 

𝑎 = 𝑏 ∧ 𝑐 

(19.15) 

𝑐 = 𝑎 ∧ 𝑏, 

𝑏 = 𝑐 ∧ 𝑎 

𝑎 ≥ 𝑏 ∧ 𝑐 

(19.16) 

𝑐 = 𝑎 ∧ 𝑏, 

𝑏 ≥ 𝑐 ∧ 𝑎 

𝑎 = 𝑏 ∧ 𝑐 
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Example 1. The relation shown inFigure 20.1 is certainly a preorder [one may verify this 

with reference to (18.21)]. A 1 But this preorder is not a symmetric relation. However, 

note that the relation ℛ may be decomposed into three sub- relations: ℛ1 relative to 

{𝐴, 𝐵, 𝐶, 𝐸, 𝐹},ℛ2relative to{𝐷}, ℛ3 relative to 𝐺. The ordinary subsets 𝐾1 =

{𝐴,𝐵, 𝐶,𝐷, 𝐸}, 𝐾2 = {𝐷}, 𝐾3 = {𝐺} are clearly maximal for the property of similitude [this 

is not the case, for example, for {𝐵, 𝐶, 𝐹} or {𝐴, 𝐶, 𝐸}]. We shall say that the relation of 

fuzzy preorder is decomposable into maximal disjoint similitude subrelations relative 

𝐾1, 𝐾2 and 𝐾3. forming the similitude classes existing in the preordered set. 

 

Fig. 20.1 

If we now consider the strongest paths existing between these classes [see the 

definition, (17.4)], these classes then form among themselves (Figure 20.2) a transitive 

 

Fig. 20.2 
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nonsymmetric fuzzy relation; we shall see in Section 23 that this is a relation of fuzzy 

order. 

Example 2. Figure 20.3a represents a fuzzy preorder relation. We may find three 

similitude subrelations ℛ1, ℛ2 and ℛ3, (Figure 20,3b); but if these are maximal, they are 

not disjoint and thus do not constitute similitude classes, 

 

Fig 20.3 

Reducible fuzzy preorder. A furzy preorder decomposable into similitude classes 

will be called a reducible fuzzy preorder. Thus, the fuzzy preorder in Figure 20.1 is 

reducible, but that of Figure 20.3a is not. 

The examples given above have involved finite sets 𝐸; but decomposition into 

similitude classes, such as that which has been explained, remains valid if 𝐸 is infinite, 

denumerably or not. The classes may then be finite or not, and their number finite or 

infinite, But, of course, representations using matrices or Berge graphs may be made only. 

in cases where 𝐸 is denumerable. 

The search for maximal similitude subrelations of a preorder (E finite). In certain 

simple cases, by examining the pairs of elements for which one has symmetry, one obtains. 

immediately the maximal similitude subrelations, which may or may not be disjoint. But it 

is convenient to have at one's disposal a general procedure. We give in Appendix B, page 

387, some appropriate algorithms. 
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21. ANTISYMMETRY 

A fuzzy binary relation is antisymmetric if 

∀(𝑥, 𝑦) ∈ 𝐸 × 𝐸 with 𝑥 ≠ 𝑦: 

Examples. Figures 22.1-22.3 give some examples of antisymmetric fuzzy binary relations. 

Thus (Figure 22.1), 

 

Fig. 21.1       Fig. 21.2 

 

Fig. 21.3 

And so on. 

Another example. Let 𝑥ℛ𝑦where 𝑥, 𝑦 ∈ 𝑅+; the relation ℛ such that 

is antisymmetric. 

(21.1) (𝜇ℛ(𝑥, 𝑦) ≠ 𝜇ℛ(𝑦, 𝑥))  𝑜𝑟 (𝜇ℛ(𝑥, 𝑦) = 𝜇ℛ(𝑦, 𝑥) = 0) 

(21.2) 
𝜇ℛ(𝐴, 𝐵) < 𝜇ℛ(𝐵, 𝐴), 

𝜇ℛ(𝐴, 𝐶) = 𝜇ℛ(𝐶, 𝐴) = 0. 

(21.2) 
𝜇ℛ(𝐴, 𝐷) > 𝜇ℛ(𝐷, 𝐴), 

𝜇ℛ(𝐴, 𝐸) > 𝜇ℛ(𝐸, 𝐴). 

(21.3) 𝜇ℛ(𝑥, 𝑦) = 𝑒
−(𝑎𝑥+𝑏𝑦)    𝑎 > 𝑏 > 1, 
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Remark. One should not confuse a nonsymmetric graph with an antisymmetric graph. For 

the first, one may write 

∃(𝑥, 𝑦) ∈ 𝐸 × 𝐸 with 𝑥 ≠ 𝑦: 

Thus, the graph in Figure 21.4 is nonsymmetric [there exists at least one ordered 

pair (𝑥, 𝑦) for which (21.4) is satisfied]. But this graph is not antisymmetric [there is at 

least one ordered pair (𝑥, 𝑦) for 𝜇ℛ(𝑥, 𝑦) ≠ 𝜇ℛ(𝑦, 𝑥) ≠ 0, for example the ordered pair 

(𝐶,𝐷)]. 

 

 

Fig. 21.4 

Ordinary antisymmetric graph associated with an antisymmetric fuzzy relation. 

To any antisymmetric fuzzy relation ℛ one will associate one (and only one) ordinary 

antisymmetric graph 𝐺 such that 

 ∀(𝑥, 𝑦) ∈ 𝐸 × 𝐸: 

We shall take (arbitrarily) for 𝐺 

This will prove convenient later for the study of nonstrict relations of order. 

Example 1. Figure 21.5 and 21.6 represent ordinary antisymmetric graphs 

associated with the relations in Figures 21.1 and 21.2. 

(21.4) 𝜇ℛ(𝑥, 𝑦) ≠ 𝜇ℛ(𝑦, 𝑥). 

(21.5) 
1)   𝑥 ≠ 𝑦 and 𝜇ℛ(𝑥, 𝑦) > 𝜇ℛ(𝑦, 𝑥) ⇒ (𝑥, 𝑦) ∈ 𝐺 and (𝑥, 𝑦) ∉ 𝐺, 

2)   𝑥 ≠ 𝑦 and 𝜇ℛ(𝑥, 𝑦) = 𝜇ℛ(𝑦, 𝑥) = 0 ⇒ (𝑥, 𝑦) ∈ 𝐺 and (𝑥, 𝑦) ∉ 𝐺, 

(21.6) ∀(𝑥, 𝑥) ∈ 𝐸 × 𝐸: (𝑥, 𝑥) ∈ 𝐺 
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(a) 

Fig.21.5 

 

Fig.21.6 

Example 2. We recall that the notion of an ordinary graph encompasses all 

ordinary sets, finite or not. Thus, to any antisymmetric fuzzy relation defined on a finite or 

an infinite set, one may associate an ordinary antisymmetric graph. Thus, to the fuzzy 

antisymmetric relation de fined by (21.3), we shall associate the ordinary graph 

this graph is represented in Figure 21.7. 

 

Fig. 21.7 

(21.7) 𝐺 = {(𝑥, 𝑦)|𝑦 ≥ 𝑥} 



101 
 

Remark. One ought not to confuse the concept of the ordinary antisymmetric graph 

associated with an antisymmetric fuzzy relation with that of the ordinary graph nearest to 

this fuzzy relation, these two graphs have no direct relationship. 

Perfect antitymmetry. L. A. Zadeh defines antisymmetry more restrictively, but in 

a way having some further interesting properties; we shall call this perfect antisymmetry. 

A perfect antisymmetric relation is one such that† 

 ∀ (𝑥, 𝑦) ∈ 𝐸 × 𝐸 with 𝑥 ≠ 𝑦: 

†L. A. Zadeh gives another definition: 

(𝜇ℛ(𝑥, 𝑦) > 0  𝑎𝑛𝑑  𝜇ℛ(𝑦, 𝑥) > 0) ⇒ (𝑥 = 𝑦). 

We shall return later to several interesting properties of perfect antisymmetry in a 

discussion of the idea of perfect ordet, 

Remark. Any perfect antisymmetric relation is evidently antisymmetric. 

Example 1. Figure 21.8 represents a perfect antisymmetric relation, Figure 22.9 

shows the ordinary antisymmetric graph asociated with this relation. 

 

Fig. 21.8      Fig. 21.9 

Example 2. Consider the two domains𝐷1
†
and𝐷2 of 𝑅+ + 𝑅+ indicated in Figure 

21.10. The relation 𝑥ℛ𝑦 defined on 𝑅+, 

(21.8) 𝜇ℛ(𝑥, 𝑦) > 0    ⇒      𝜇ℛ(𝑦, 𝑥) = 0. 

(21.9) 𝜇ℛ(𝑥, 𝑦)
= 𝜇1(𝑥, 𝑦)       𝑖𝑓 (𝑥, 𝑦) ∈ 𝐷1
= 𝜇2(𝑥, 𝑦)       𝑖𝑓 (𝑥, 𝑦) ∈ 𝐷2
= 0          𝑖𝑓 (𝑥, 𝑦) ∉ 𝐷1 ∪ 𝐷2
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Fig. 21.10 

Is a perfect antisymmetric relation. Moreover, Figure 21.10 represenrs the ordinary 

antisymmetric graph associated with the expression (21.9). 

22. FUZZY ORDER RELATIONS 

A binary relation that is 

(1)  reflexive [according to (16.7)] 

(2) transitive [according to (16,8) or (16.9)] 

(3) antisymmetric [according to (22,1)] 

is a fuzzy order relation (we shall also say simply order relation if no confusion in 

possible). 

One may also define this property in the following fashion: A fuzzy preorder 

relation that is antisymmetric† is a furzy order relation. 

Example 1. Figures 23.1 and 23.2 represent fuzzy order relations. One may verify 

that these are indeed reflexive. transitive, and antisymmetric. 

 

Fig 22.1 
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Exemple 2. The relation defined by (19.14) and Figure 19.2 is a fuzzy order 

relation. 

 

Fig 22.2 

Example 3. The relations 𝑥ℛ𝑦 where 𝑥, 𝑦 ∈ 𝑁 (Figure 22.3) is a fuzzy order 

relation. 

†This is then reducible and each similitude class contains only one element. 

 

Fig. 22.3 

Theorem I Every fuzzy order relation induces an order (in the sense of the theory 

of sets) on its reference set through the relation 

This order will be denoted𝑦 ≽ 𝑥 

Proof. It suffices to consider the ordinary antisymmetric graph associated with the 

fuzzy order relation. 

Examples. Figures 22.4 and 22.5 represent, respectively, the ordinary 

antisymmetric graphs associated with the fuzzy order relations given in Figures 22.1 

and 22.2. 

(22.1) 𝜇ℛ(𝑥, 𝑦) ≥ 𝜇ℛ(𝑦, 𝑥) 
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Fig 22.4 

 

Fig. 22.5 

Figure 22.6 represents the denumerably infinite ordinary graph associated with the 

relation presented in Figure 22.3. 

Fig 

22.6 

Fuzzy relation of total order.† A fuzzy relation is of total order (a totally ordered 

fuzzy relation) if its associated ordinary graph represents a total order. 

An example is given in Figure 22.5. Using the notation 

that is, if(𝑥, 𝑦) ∈  𝐺 and (𝑦, 𝑥) ∈ 𝐺, one then has 

(22.2) 𝑦 ≽ 𝑥    𝑖𝑓    𝜇ℛ(𝑥, 𝑦) > 𝜇ℛ(𝑦, 𝑥) 

(22.3) 𝐷 ≽ 𝐵 ≽ 𝐶 ≽ 𝐴 
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Partially ordered fuzzy relations. A fuzzy relation is of partial order (a partially 

ordered fuzzy relation) if its associated ordinary graph is partially ordered, that is, is 

ordered but not totally ordered. 

This is the case in the example of Figure 22,4, One has, 

†This is called a linear order relation by L. A. Zadeh when this order is perfect. One may 

define a linear order with the more restrictive condition of antisymmetry: 

𝑥 ≠ 𝑦, 𝜇ℛ(𝑥, 𝑦) > 0     𝑜𝑟      𝜇ℛ(𝑦, 𝑥) > 0 

(exclusive) 

Perfect order relations. If one takes the notion of perfect antisymmetry[according 

to (21.8)] in place of the notion defined by (21.1), one will then have a perfect order 

relation. 

All of these order relations have particularly interesting properties, which we shall 

examine later, 

Nonstrict and strict order relations. As in the theory of ordinary sets, one may 

distinguish between nonstrict (transitive, reflexive, antisymmetric) order relations and 

strict (transitive, reflexive, antisymmetric) order relations. A nonstrict order relation will 

generally be called an order relation, and a strict order relation will have to be made 

precise by its adjective. Such a relation may also be called a nonreflexive order relation. 

A nonstrict order being denoted, as we have indicated, 

then a strict order will be denoted 

We shall give several examples of fuzzy order relations that are strict. 

Example 1. Figure 22.7 gives an example of a strict order relation; it is also a 

perfect order relation. Further, the order is total. One may verify that one has 

(22.4) 
𝐵 ≽ 𝐴 ≽ 𝐶, 

𝐷 ≽ 𝐶. 

(22.5) 𝑦 ≽ 𝑥 

(22.6) 𝑦 ≻ 𝑥 

(22.7) 𝐴 < 𝐵 < 𝐶 < 𝐷 
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Fig. 22.7 

Example 2.Consider 𝑥ℛ𝑦, where 𝑥, 𝑦 ∈  𝑅 and 

This is a relation of strict and perfect order [one may check that for 𝑦 =

𝑥, 𝜇ℛ(𝑥, 𝑦) = 0. Further, the order is total. This fuzzy relation may be taken to represent 

(rather poorly) the proposition 𝑦 > 𝑥. 

Important general remark. All definitions associated with order relations in 

ordinary sets† are directly transposable to fuzzy order relations, it is sufficient to pass 

through the notion of the associated ordinary graph. It is thus that one may study for fuzzy 

onder relations the classical concepts: 

greatest and least element; 

majorant and minorant; 

limit superior and limit inferior; 

maximal chain; 

filtering set; 

Hasse diagram; 

semilattice and lattice. 

We shall take up again, when necessary, certain of these concepts for particular 

uses. 

We return now to the concept of a reducible fuzzy preorder for an important 

theorem 

Theorem II. In a reducible fuzzy preorder relation, there exists at least one 

similitude class, and the similitude classes form among themselves a fuzzy order relation if 

one considers the concept of the strongest path from one class to another. 

(22.8) 𝜇ℛ(𝑥, 𝑦)
= 0ℛ𝑦 < 𝑥,                    

=
1

1+
1

(𝑥−𝑦)2

, 𝑦 ≥ 𝑥
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Proof. The relation formed by the similitude classes in necessarily antisymmetric, 

otherwise certain classes would not be disjoint 

Example 1. Return now to the example of Figure 21.2. For the order relation 

between these classes, one has the graph in Figure 23.5 for the associated ordinary graph. 

 

Fig. 22.8 

Thus, for these classes, there exists a total order 

Having thus presented the ordinary graph constituting the ordinary order relation 

between the similitude classes, one may then give the fuzzy order relation existing 

between the classes, obtaining the relation determined by the strongest path existing 

between each class For the example of Figures 20,1, 20.2, and 22.8, these results have 

been given in Figure 20.2; similarly, we reproduce here (Figure 22.9) those holding for 

Figure 22.8. 

†For all that omnceres definitions with respect to the theory of (ordinary) sets, we refer to 

the work of Kaufmann and Precigout [K] 

 

(a)                                                              (b) Fig. 22.9 

(22.9) 𝐾3 ≻ 𝐾2 ≻ 𝐾1 
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In the case of the example presented in Figure 21.1 determination of the strongest 

paths existing between 𝐾1and𝐾2, 𝐾2and 𝐾3.and finally between 𝐾2 and 𝐾3 is very easy. 

The class 𝐾1 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹} and the class 𝐾2 = {𝐷} are joined by paths whose values 

are given by 

 

The strongest path (not unique) has value 0.3. For 𝐾2toward 𝐾1. one sees 

 

and the nonunique strongest path has value 0.2.  

For 𝐾1toward 𝐾3 = {𝐺}, one may see 

 

and the nonunique strongest path has value 0,5. In the same manner one finds that the 

nonunique strongest path for 𝐾3 toward 𝐾1 has value 0,2.  

One also obtains 0,4 for 𝐾2 → 𝐾3 and 0,2 for 𝐾3 → 𝐾2, where the determination 

istrivial since these classes each have only one unique element. It is thus that Figure 

22.9has been obtained.  



109 
 

More generally, to construct the fuzzy order relation existing between the classes, 

one proceeds in the following fashion: 

(1) Find the similitude classes 𝐾𝑖 in the reducible fuzzy preorder. For these, 

consider the ordered pairs (𝑥, 𝑦) for which one has 

𝜇ℛ(𝑥, 𝑦) = 𝜇ℛ(𝑦, 𝑥) 

With respect to these ordered pairs construct the maximal similitude subrelations†. 

If these are all disjoint, one has obtained the similitude classes. If there exist at least two 

that are not disjoint, we do not have a reducible fuzzy preorder. 

(2) For each ordered pair (𝐾𝑖, 𝐾𝑗), 𝑖 ≠ 𝑗, examine the fuzzy subrelationℛif existing 

between 𝐾𝑖and 𝐾𝑗 (rows of 𝐾𝑖, and columns of 𝐾𝑗 . Determine the global projection of ℛ𝑖𝑗 

[see (12.13)]; thus, 

ℎ(ℛ𝑖𝑗) =⋁⋁𝜇ℛ𝑖𝑗(𝑥, 𝑦), 𝑥 ∈ 𝐾1, 𝑦 ∈ 𝐾2
𝑦

.

𝑥

 

(4) Assign the value ℎ(ℛ𝑖𝑗) to the membership function of the pair (𝐾𝑖, 𝐾𝑗). 

 

Fig. 22.10 

†Use if necessary one of the algorithms given in Appendix B. p. 387. 

Example 2. The example given in Figure 22.10 is a little more complicated. One 

may notice in this reducible fuzzy preorder several particularities that have not appeared in 

the preceding examples. The existence of a partial order between the classes is evident in 

Figure 22.11. In the preceding example, we had a total order (see Figure 22,8). 
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Fig. 22.11 

Example 3. The fuzzy relation presented in Figure 23.12 is a reducible fuzzy pre 

order relation if one imposes 

0 ≤ 𝑎1 ≤ 𝑎2 ≤ ⋯ ≤ 𝑎𝑘 ≤ ⋯ ≤ 1 

We may see that this decomposes into an infinity of similitude classes forming 

among themselves a total order 

𝐶1 ≺ 𝐶2 ≺ 𝐶3 ≺ ⋯ 

 

Fig. 22.12 

23. ANTISYMMETRIC RELATIONS WITHOUT CIRCUITS, ORDINAL 

RELATIONS, ORDINAL FUNCTION IN A FUZZY ORDER RELATION 

We shall consider a fuzzy relation (E finite) that possesses the three properties: 

(1) reflexivity [according to (16.7) 

(2) antisymmetry (according to (22.1)] 
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(3) does not have an ordinary circuit in its associated ordinary graph, other than 

loops, that is, other than circuits of length 1, such as (𝑥, 𝑥). 

Such a relation will be called a fuzzy ordinal relation, 

Example 1. The furzy relation in Figure 24,1 is an ordinal relation. By con 

structing the associated ordinary graph (Figure 24,2), one may verify that this relation is 

indeed reflexive, antisymmetric, and without circuits other than loops. 

 

Fig. 23.1 

 

Fig. 23.2 

Review of the notion of the ordinal function of an ordinary antixymmetric finite 

graph without circuits. We shall consider an ordinary graph without circuits 𝐺 ⊂ 𝐸 × 𝐸, 𝐸 

finite. We shall again designate 𝐺 by the ordered pair(𝐸, Г), where Е⤳
Г
Е, Г representing 

the mapping of 𝐸into 𝐸, which in general is multivalued. 

We define the ordinary subsets𝑁0, 𝑁1, … , 𝑁𝑟, such that† 

†Some authors prefer to define the ordinal function of an ordinary graph by replacing the 

inverse mapping I with the direct mapping I in formulas (23.1). This has the effect of 

eventually giving another order of levels 

(23.1) 
𝑁𝑜 = {𝑋𝑖|Г

−1{𝑋𝑖}} = 𝜙}, 

𝑁1 = {𝑋𝑖|Г
−1{𝑋𝑖}} ⊂ 𝑁0}, 
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Where𝑟 is the least integer such that 

One may easily show that the ordinary subsets 𝑁𝑘, 𝑘 = 0,1,2,… , 𝑟form a partition 

of 𝐸 and are totally and strictly ordered by the relation 

The function 𝑂(𝑋𝑗) defined by 

is called the ordinal function of an ordinary graph without circuits. 

In other words, less precise but more concise: One has in mind the decomposition 

of the set of vertices of the ordinary graph 𝐺 without circuits into ordinary subsets, dis 

joint and ordered so that if one of these vertices belongs to one of the subsets carrying the 

number k, all vertices following the vertex being considered must be placed in a subset 

carrying a number larger than 𝑘. 

The ordinary subsets of the partition are called levels.† 

Example. The ordinary graph without circuits in Figure 23.3 has been decomposed 

into levels in Figure 24.4. If 𝑋𝑖, is a vertex of the graph, to each 𝑋𝑖, there corresponds an 

𝑁𝑘 or more simply a 𝑘 ∈ {0,1,2,… ,5}. The function 𝑋𝑖 ⤳ 𝑘 represented in Figure 24.5 is 

the ordinal function of the graph. An enumeration of the vertices is 

presented in Figure 24.6. 

Fig. 23.3 

† some authors call these ordinary subsets ranks 

𝑁2 = {𝑋𝑖|Г
−1{𝑋𝑖}} ⊂ 𝑁0 ∪ 𝑁1}, 

⋮ 

𝑁𝑟 = {𝑋𝑖|Г
−1{𝑋𝑖}} ⊂ ∪𝑘=0

𝑟−1 𝑁𝑘}. 

(23.2) Г𝑁𝑟 = 𝜙 

(24.3) 𝑁𝑘 ≺ 𝑁𝑘
′      ⇔      𝑘 < 𝑘′ 

(23.4) 𝑋𝑖 ∈ 𝑁𝑘      ⇔      𝑂(𝑋𝑖) = 𝑘 
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The ordinal function of a graph is not in general unique, it may be defined with 

respect to the largest elements of the ordered set instead of with respect to the smallest, 

that is to say, ordered from right to left instead of toward the right as we have done in the 

examples of Figure 23.3-23.6. 

 

Fig. 23.4         Fig. 23.5 

The notion of ordinal function plays an important role in a large number of 

theoretical combinatorial problems and practical applications, 

Extension of the notion of ordinal function to an ordinary graph having circuits. 

For this, it suffices to consider equivalence classes (with respect to the relation, "there 

exists a path from 𝑋𝑖 to 𝑋𝑗 and vice versa") of the ordinary graph. 

These classes are the maximal ordinary subsets for the equivalence relation. These 

classes then form an order (total or partial, depending on the case). If the order is total, one 

has the ordinal function; if it is partial, one will seek the ordinal function of the ordinary 

graph without circuits formed by these classes, 

†In the sense given to the words greatest element and least element in the theory of 

ordinary ordered sets 
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Figure 23.6 

                                    

Fig. 23.7      Fig. 23.8 

                                                             

    Fig. 23.9      Fig. 23.10 

An example is given in Figures 23.7-23.10.  

Method† for determining the level of a graph without circuits. We shall consider 

the Boolean matrix of the ordinary graph in Figure 24.3, this matrix is presented in Figure 
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23.11. We form a row Λ0in which appears the sum of the rows of the matrix ‡. The zeros 

of Λ0give the vertices that are not precedents of one another, thus 𝐸 and 𝐻 form 

level 𝑁0.Eliminating the sum of the 𝐸 and𝐻 rows from the Λ0row, one obtains the 

rowΛ1.Where the zeros of the row Λ0 have been replaced by a 𝑋 (cross). The zeros that 

appear in the row Λ1 give the vertices that are not precedents of one another whenever 𝐸 

and 𝐻have been eliminated; these are 𝐵, 𝐼, and 𝐽, which form 𝑁1 We eliminate from row 

Λ1 the sum of rows 𝐵, 𝐼, and 𝐽 after having replaced all the zeros previously appearing with 

an X; the new zeros that appear in Λ2give the vertices that are not precedents of one 

another whenever 𝐸, 𝐻,𝐵, 𝐼, and 𝐽 have been eliminated, these are 𝐴,𝐺, and 𝑁, which form 

𝑁2. And we continue thus until exhaustion. Afterward, it remains only to construct the 

ordinary graph (Figure 24.4) where the vertices appear with their respective levels. An 

arbitrary enumeration of the vertices is represented in Figure 24.6; it respects the ordinal 

function. 

When the graph contains at least one circuit, there exists a row Λ𝑖 in which it is 

impossible to make a new zero appear. This also therefore gives us an automatic means of 

checking whether a graph is without circuits. 

If one has seen how to obtain the ordinal function in the inverse sense, by taking 

the greatest elements of the order (that is, from the right to the left in our representation). 

one may utilize exactly the same procedure by taking the transpose of the Boolean matrix 

†A method due to M. Demoucron of Honeywell Butt Cie., Paris, 

‡That is, the sum calculated in each column 
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Fig. 23.11 

(the rows become the columns and vice versa). Thus, reconsidering the example in Figures 

24.3-24.6, we seek this time an ordinal function from right to left. The result is presented 

in Figure 24.12. 

 

Fig. 23.12 

Ordinal function of a fuzzy order relation. An order relation is an ordinal relation; 

it is reflexive, antisymmetric, and without circuits; it is moreover transitive. One may then 

define an ordinal function for it. 
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An example will serve to illustrate, 

In Figure 23.13 we have presented a fuzzy order relation that constitutes a partial 

order. In Figure 23.14 we have presented the ordinal function of the associated ordinary 

graph with respect to the smallest elements. In this graph we have intentionally omitted the 

loops 

 

    Fig. 23.13      Fig. 23.14 

We now consider the fuzzy order relation† presented in Figure 23.15a. Its 

associated ordinary graph has been given in Figure 23.15b. By permuting the elements in a 

manner to satisfy the ordinal function given in Figure 23.14 (Figures 23.14 and 23,156 

represent the same ordinary graph), one sees a triangular matrix appear. By reconsidering 

the fuzzy order relation in the total order of its elements chosen to conform to the ordinal 

function, one obtains a fuzzy order relation that will be said to be triangular (Figure 

23.15d). One knows that it is important, for whatever calculations, to know how to reduce 

a matrix to triangular form. 

†We have taken as an example a perfect order relation with the desire of presenting a 

simple example: but the considerations that follow would remain valid for a fuzzy order 

relation that is not perfect, and the property that gives a triangular matrix in verified only 

for ordered pairs (𝑥, 𝑦) such that𝜇ℛ(𝑥, 𝑦) > 𝜇ℛ(𝑦, 𝑥) 
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Fig. 23.5. In these matrices, the empty squares correspond to zeros. 

Utility of the notion of ordinal function in fuzzy preorder relations. We have seen 

in Section 22 that the notion of similitude class induces in a fuzzy preorder relation an 

order (total or partial) of the similitude classes (in the case of a reducible preorder).  

The associated ordinary graph of this order is evidently reflexive and 

antisymmetric, it is also transitive. If the preorder is an order, it may be reduced, as we 

have just seen, to a triangular form in its matrix representation. If the preorder is not an 

order, it may thenalways be reduced to a block-triangular form. Such a block-triangular 

form has already been presented in the example given in Figure 23.10, which we 

reproduce here associated with its Boolean matrix (Figure 24.16) in order to show that it is 

a block-triangular form. 

Fig. 23.16. The empty squares represent zeros. 
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Further, the construction of the ordinal function permits the automatic realization 

of the search for the Hasse diagram † corresponding to the order relation and to the deter 

mination of the levels of this diagram. 

24. DISSIMILITUDE RELATIONS 

We shall consider a similitude relation such as that defined in Section 20. For 

convenience, we tecall here the three properties of similitude: 

𝜇ℛ(𝑥, 𝑧) ≥  ⋁[𝜇ℛ(𝑥, 𝑦) ∧ 𝜇ℛ(𝑦, 𝑧)]

𝑦

,                           𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 

 Now we associate with ℛ a relation 
ℛ
← such that 

†Those who are not familiar with what is called a Hase diagram in the nedinary theory of 

sets may consult, for example, references [𝐾1, 𝐾2]. 

Knowing thatℛ has properties (24.1)-(24.3), these are then properties ofℛ . Beginning 

with (24.1), one has 

But, according to (7.32), 

Thus (24.5) may be written 

Or 

This property will be called 𝑚𝑖𝑛 −𝑚𝑎𝑥 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦. † 

Concerning (24.2), one may see 

(24.1) 1)  ∀(𝑥, 𝑦), (𝑦, 𝑧) ∈ 𝐸 × 𝐸: 

(24.2) 
2)  ∀(𝑥, 𝑥) ∈ 𝐸 × 𝐸:      𝜇ℛ(𝑥, 𝑥) =

1                                                               𝑟𝑒𝑓𝑙𝑒𝑥𝑖𝑣𝑖𝑡𝑦 

(24.3) 
3)  ∀(𝑥, 𝑦) ∈ 𝐸 × 𝐸:      𝜇ℛ(𝑥, 𝑦) =

𝜇ℛ(𝑥, 𝑦)                                                  𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 

(24.4) ∀(𝑥, 𝑦) ∈ 𝐸 × 𝐸: 𝜇
ℛ
←(𝑥, 𝑦) = 1 − 𝜇ℛ(𝑥, 𝑦) 

(24.5) 1 − 𝜇
ℛ
←(𝑥, 𝑦) ≥⋁[1 − 𝜇

ℛ
←(𝑥, 𝑦)] ∧ [1 − 𝜇

ℛ
←(𝑦, 𝑧)] .

𝑦

 

(24.6) [1 − 𝜇
ℛ
←(𝑥, 𝑦)] ∧ [1 − 𝜇

ℛ
←(𝑦, 𝑧)] = 1 − 𝜇

ℛ
←(𝑥, 𝑦) ∨ 𝜇

ℛ
←(𝑦, 𝑧). 

(24.7) 1 − 𝜇
ℛ
←(𝑥, 𝑧) ≥⋁[1 − 𝜇

ℛ
←(𝑥, 𝑦) ∨  𝜇

ℛ
←(𝑦, 𝑧)]

𝑦

 

(24.8) 𝜇
ℛ
←(𝑥, 𝑧) ≤⋀[𝜇

ℛ
←(𝑥, 𝑦) ∨  𝜇

ℛ
←(𝑦, 𝑧)]

𝑦
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And finally, symmetry is preserved. Thus we have 

𝜇
ℛ
←(𝑥, 𝑧) ≤  ⋀[𝜇

ℛ
←(𝑥, 𝑦) ∨  𝜇

ℛ
←(𝑦, 𝑧)]

𝑦

,         𝑚𝑖𝑛𝑖 − 𝑚𝑎𝑥 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 

A fuzzy binary relation that possesses properties (24.10)-(24.12) is called a dissimilitude 

relation, 

Example 1. Figure 24.1 represents dissimilitude relation (it is, moreover, the 

relation ℛ corresponding to the similitude relation ℛ presented in Figure 19.1). As an 

exercise, we verify (24.10) for several pairs of elements, 

 

Fig. 24.1 

†One may also call thin min-max cotransitivity. 

Arc (𝐴, 𝐵) 

𝜇(𝐴, 𝐴) ∨ 𝜇(𝐴,𝐵) = 0 ∨ 0,2 = 0,2 , 

𝜇(𝐴, 𝐵) ∨ 𝜇(𝐵,𝐵) = 0,2 ∨ 0 = 0,2 , 

𝜇(𝐴, 𝐶) ∨ 𝜇(𝐶, 𝐵) = 0,3 ∨ 0,3 = 0,3 , 

𝜇(𝐴,𝐷) ∨ 𝜇(𝐷, 𝐵) = 0 ∨ 0,2 = 0,2 , 

𝜇(𝐴, 𝐸) ∨ 𝜇(𝐸,𝐵) = 0,1 ∨ 0,2 = 0,2 , 

(24.9) 𝜇
ℛ
←(𝑥, 𝑥) = 1 − 𝜇

ℛ
←(𝑥, 𝑥) = 1 − 1 = 0. 

(24.10) 1)  ∀(𝑥, 𝑦), (𝑦, 𝑧), (𝑧, 𝑥) ∈ 𝐸 × 𝐸: 

(24.11) 

2)  ∀(𝑥, 𝑥) ∈ 𝐸 × 𝐸:      𝜇
ℛ
←(𝑥, 𝑥) =

0                                                         𝑎𝑛𝑡𝑖𝑟𝑒𝑓𝑙𝑒𝑥𝑖𝑣𝑖𝑡𝑦 

(24.12) 

3)  ∀(𝑥, 𝑦) ∈ 𝐸 × 𝐸:      𝜇
ℛ
←(𝑥, 𝑦) =

𝜇
ℛ
←(𝑦, 𝑥)                                                  𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 

(24.13) 𝑀𝐼𝑁[0,2   , 0,2  , 0,3   ,   0,2    ,   0,2] = 0,2. 
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𝜇(𝐴, 𝐵) = 0,2 ≤ 0,2. 

Arc (𝐴, 𝐶) 

𝜇(𝐴, 𝐴) ∨ 𝜇(𝐴, 𝐶) = 0 ∨ 0,3 = 0,3 , 

𝜇(𝐴, 𝐵) ∨ 𝜇(𝐵, 𝐶) = 0,2 ∨ 0,3 = 0,3 , 

𝜇(𝐴, 𝐶) ∨ 𝜇(𝐶, 𝐶) = 0,3 ∨ 0 = 0,3 , 

𝜇(𝐴,𝐷) ∨ 𝜇(𝐷, 𝐶) = 0 ∨ 0,3 = 0,3 , 

𝜇(𝐴, 𝐸) ∨ 𝜇(𝐸, 𝐶) = 0,1 ∨ 0,3 = 0,3 , 

𝑀𝐼𝑁[0.3,… . , ] = 0,3 . 

𝜇(𝐴, 𝐶) = 0,3 ≤ 0,3 . 

And so on 

 Example 2. The relation presented in Figure 25.2 is a dissimilitude relation if 

 

Fig.24.2 

This relation has been obtained from that presented in Figure 20.3 by setting 

Example 3. The fuzzy relation 

is a dissimilitude relation. It has been obtained from (20.3) by setting 

𝜇
ℛ
←(𝑥, 𝑦) = 1 − 𝜇ℛ(𝑥, 𝑦). 

(24.14) 1 ≥ 𝑏1 ≥ 𝑏2 ≥ ⋯ ≥ 𝑏𝑖 ≥ ⋯ ≥ 0. 

(24.15) 𝜇
ℛ
←(𝑥, 𝑦) = 1 − 𝜇ℛ(𝑥, 𝑦) 𝑙𝑒𝑡𝑡𝑖𝑛𝑔 𝑏𝑖 = 1 − 𝑎𝑖 , 𝑖 = 1,2,3,… 

(24.16) 𝜇
ℛ
←(𝑥, 𝑦)

= 1 − 𝑒−𝑘(𝑦+1),                𝑦 < 𝑥, 𝑘 > 1
= 0,                                                   𝑦 = 𝑥

= 1 − 𝑒−𝑘(𝑥+1),                 𝑦 > 𝑥, 𝑘 > 1
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We shall see several examples, but first we recall here, in order to have them 

nearby, axioms (5.49)-(5.52) concerning the notion of distance between two elements of a 

set. 

If 𝑑(𝑋, 𝑌) is this distance between 𝑋and 𝑌: 

∀𝑋, 𝑌, 𝑍 ∈ 𝐸, one must have 

Where∗ is the operation considered among the distances 𝑑(𝑋, 𝑌). 

To these three conditions, one may logically introduce a fourth 

Then considering𝜇
ℛ
←(𝑥, 𝑦), one has indeed, by definition, that (24.17) is satisfied 

since 0 ≤ 𝜇
ℛ
←(𝑥, 𝑦) ≤ 1. Relation (24.18) is satisfied [see (24.12)]. Relation (24.19) is 

satisfied [see (24,10), where the operation∗ is the min-max operation]. Finally, (24.20) is 

verified see (24.11)]. Thus, one may put 

and consider 𝜇
ℛ
←(𝑥, 𝑦) as a distance† existing between 𝑥 and 𝑦. 

Min-max distance between two elements in a similitude relation. Let ℛ be a 

similitude relation. We shall call the min-max distance between 𝑥and 𝑦, 𝑦 ⊂ 𝐸ℛ ⊂ 𝐸 × 𝐸. 

Example 1. We take up again the example of Figure 19.1 (seen again in Figure 24.3). This 

is a similitude relation ℛ. Figure 245.4 represents the dissimilitude relationassociated with 

that of Figure 24.3. One thus has 

†In this case, one may also call 𝜇ℛ(𝑥, 𝑦) the codistance between x and y. 

(24.17) 1) 𝑑(𝑋, 𝑌) ≥ 0, 

(24.18) 2) 𝑑(𝑋, 𝑌) = 𝑑(𝑌, 𝑋), 

(24.19) 1) 𝑑(𝑋, 𝑌) ∗ 𝑑(𝑌, 𝑍) ≥ 𝑑(𝑋, 𝑍). 

(24.20) 𝑑(𝑋, 𝑋) = 0 

(24.21) 𝑑(𝑥, 𝑦) = 𝜇
ℛ
←(𝑥, 𝑦) 

(24.22) 𝜇
ℛ
←(𝑥, 𝑦) = 1 − 𝜇ℛ(𝑥, 𝑦) 



123 
 

 

    Fig. 24.3       Fig. 24.4 

Example 2. Consider again example (19.3); one then has 

25. RESEMBLANCE RELATIONS † 

A relationℛ of such that 

†In the theory of ordinary sets, the fact that this binary relation does not inherit the 

property of transitivity has provoked an almost total disinterest on the part of 

mathematicians in this property (an exception being C. Flament, Analyse des structures 

preferentiellesintracitives, Proc, Sec, Interm Conf. OR., p. 150, 1960). Just as humerous 

cartoonists of all times, they have engaged in a very common error, that of believing that 

resemblance in transitive. Recall those caricatures that one has seen in which modified 

images appear one after the other, as King Louis Philippe has been transformed in 

countenance or the emperor Napoleon III transformed into a mackerel. The talent of these 

humorists must not obscure their logical error. Writing, in the sense of the theory of 

ordinary sets, A resembles 11. B resembles C, C resembles D,…,K resembles L, therefore 

A resembles L. Indeed A=L. constitutes a sequence of deductions without validity. Often 

enough, moreover, fate deductions of this nature are used by men in the spirit of making a 

(24.22) 

𝑑ℛ(𝐴, 𝐵) = 0,2 , 

𝑑ℛ(𝐴, 𝐶) = 0,3 , 

𝑑ℛ(𝐴,𝐷) = 0. 

… 𝑒𝑡𝑐 

(24.24) 𝑑(𝑥, 𝑦)
= 𝑒−𝑘(𝑦+1)     𝑦 < 𝑥, 𝑘 > 1
= 1                               𝑦 = 𝑥

= 𝑒−𝑘(𝑥+1)     𝑦 > 𝑥, 𝑘 > 1

 

(25.1) ∀(𝑥, 𝑥) ∈ 𝐸 × 𝐸: 𝜇ℛ(𝑥, 𝑥) = 1            (𝑟𝑒𝑓𝑙𝑒𝑥𝑖𝑣𝑖𝑡𝑦) 



124 
 

joke or by political men to make the best of the stupidity of certain voters. The sophists 

have a particular habit of making is believe in the existence of transitivity where its 

existence may well be doubted.  

But, with the theory of fuzzy subsets, one mas measure several sorts of 

resemblance with the aidof the notion of distance in the transitive closure. The notion of 

similitude then constitutes the bridgeexisting between equivalence and resemblance. 

Is called a resemblance relation.† 

Example 1. Figure 25.1 gives an example of a resemblance relation, 

 

Fig.25.1 

Example 2. The relation (16.12), 

is not, as we have seen, transitive, but it is reflexive and symmetric, it is a fuzzy relation of 

resemblance, 

Min-max distance in a resemblance relation. If ℛis a resemblance relation,‡ 

thenℛ, its transitive closure, is a similitude relation. One may then define the notion of 

min- max distance in ℛ by that inℛ̂. Thus, 

Example 1. We reconsider the example of Figure 25.1. With the aid of the 

composition formula (16.3) we have calculatedℛ, the transitive closure ofℛ̂. 

(25.2) ∀(𝑥, 𝑦) ∈ 𝐸 × 𝐸: 𝜇ℛ(𝑥, 𝑦) = 𝜇ℛ(𝑦, 𝑥)            𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 

(25.3) 𝜇ℛ(𝑥, 𝑦) = 𝑒
−𝑘(𝑥−𝑦)2 , 𝑥, 𝑦 ∈ 𝑁 

(25.4) 𝑑ℛ(𝑥, 𝑦) = 1 − 𝜇ℛ̂(𝑥, 𝑦). 
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       Fig. 25.2           Fig. 25.3 

This result is presented in Figure 25.2. Next we have calculated of such that 

†See the previous footnote. 

‡The composition of with R comerves reflexivity and symmetry. 

the result is presented in Figure 25.3.  

Finally one has 

Example 2. Consider the resemblance relation defined by 

This relation is represented in Figure 26.4. 

(25.5) 𝜇
ℛ
←(𝑥, 𝑦) = 1 − 𝜇ℛ̂(𝑥, 𝑦). 

(25.6) 

𝜇
ℛ̂
←(𝐴, 𝐵) = 0,4 , 

𝜇
ℛ̂
←(𝐴, 𝐶) = 0,4 , 

⋮ 

𝜇
ℛ̂
←(𝐵,𝐷) = 0,4 , 

… 𝑒𝑡𝑐 

(25.7) 𝜇ℛ(𝑥, 𝑦) =
1

1 + |𝑥 − 𝑦|
, 𝑛 ∈ 𝑁, 𝑦 ∈ 𝑁. 
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              Fig. 25.4    Fig.25.5 

Calculating† 

one obtains the relation given in Figure 26.5. One then has 

Hence, in conclusion 

We note that if one reconsiders (26.7) but this time with 

one would find 

for all 𝑥 and all 𝑦. This is not paradoxical since the distance between 𝑥 and 𝑦 = 𝑥 + 𝑑𝑥 is 

infinitely small and of the same order as 𝑑𝑥. Of course, if one would give the distance 

some other significance than the min-max distance considered here, it would be proper to 

review this conclusion. 

Max-product transitive closure for a resemblance relation. Let ℛbe a 

resemblance relation. In certain cases it is preferable to measure the distance existing 

between elements with the aid of the max-product operation instead of the max-min 

operation, that is, to use (13.19) instead of (13.2); thus 

(25.8) ℛ̂ = ℛ ∪ ℛ2 ∪ ℛ3 ∪ … 

(25.9) 𝜇ℛ̂(𝑥, 𝑦)
=
1

2
, 𝑥 ≠ 𝑦

= 1, 𝑥 = 𝑦
 

(25.10) 𝜇ℛ(𝑥, 𝑦)
=

1

2
, 𝑥 ≠ 𝑦

= 0, 𝑥 = 𝑦
 

(25.11) 𝑥 ∈ 𝑅+    𝑎𝑛𝑑     𝑦 ∈ 𝑅+ 

(25.12) 𝑑ℛ(𝑥, 𝑦) = 0 

(25.13) 𝜇ℛ2(𝑥, 𝑧) =⋁[𝜇ℛ(𝑥, 𝑦) .  𝜇ℛ(𝑦, 𝑧)]

𝑦
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The max-product transitive closure of a relation is 

where 

The points on∧̇ and 𝑘̇ remind us that we have a max-product composition, 

†In order to obtain ℛ̂ it is necessary to take ℛ ∪ ℛ2 ∪ ℛ3 ∪ …it in clear that all the 

elements of ℛ̂tend toward 
1

2
, except these on the principal diagonal which 

remain equal to 1. 

We see an example. Recall that for Figure 25.1, we have calculatedℛ̂ and 
ℛ̂
→ of in Figures 

25.2 and 25.3. In Figure 25.5 one may observe how we have calculatedℛ2̇, ℛ3̇, ℛ4̇, ℛ5̇, ℛ̇̂. 

 

Fig. 25.6 

Remarks on the calculation of ℛ̇̂. We have seen in (18.19) that 

without having the reverse be true. 

(25.14) ℛ̇̂ = ℛ ∪ ℛ2̇ ∪ ℛ3̇ ∪ … 

(25.15) ℛ𝑘̇ = ℛ . ℛ.… . ℛ⏟      ,

𝑘 𝑡𝑖𝑚𝑒𝑠

𝑘 = 1,2,3,… 

(25.16) ℛ ∘ ℛ ⊂  ℛ    =     ℛ . ℛ ⊂  ℛ 
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Theorem II of Section 17, that is, (17.13), is also verified for the max-product. 

With respect to a particular 𝑘. 

And in the case where is a resemblance relation, one has likewise 

Min-sum distance in a resemblance relation. We shall call 

the min-sum distance; but first we must determine whether the distance axioms (24.17- 

(24.20) are satisfied. 

(24.17) is verified a priori since 𝜇ℛ̂(𝑥, 𝑦) ∈ [0,1]. 

(24.18) is verified a priori since the relationℛ̇̂ is symmetric. 

(24.20) is verified a priori since the relationℛ̇̂is reflexive, which entails 𝜇ℛ̂(𝑥, 𝑥) = 0 

It remains to show that one indeed has property (24.19). We shall operate as for(24.5)-

(24.9). 

One then has 

And from here, following (8.23), 

 ≥⋁[1 − 𝜇
ℛ̇̂
 ⃑(𝑥, 𝑦) − 𝜇

ℛ̇̂
 ⃑(𝑦, 𝑧) + 𝜇

ℛ̇̂
 ⃑(𝑥, 𝑦). 𝜇

ℛ̇̂
 ⃑(𝑦, 𝑧)]

𝑦

 

This gives  

That is 

Where+̂ is the algebraic sum defined by (12.42). Then we certainly have property (24.19) 

for the min-sum operation. 

(25.17) ℛ𝑘̂.1̇̂ ∘ ℛ𝑘̇      ⇒     ℛ̇̂ = ℛ ∪ ℛ2̇ ∪ ℛ𝑘̇ 

(25.18) ℛ𝑘̂.1̇̂ = ℛ𝑘̇      ⇒     ℛ̇̂ = ℛ𝑘̇ 

(25.19) 𝛾ℛ(𝑥, 𝑦) = 𝜇
ℛ̇̂
 ⃑(𝑥, 𝑦) 

(25.20) 𝜇
ℛ̇̂
(𝑥, 𝑧) ≥⋁[ℛ̇̂(𝑥, 𝑦) . ℛ̇̂(𝑥, 𝑦)]

𝑦

 

(25.21) 1 − 𝜇
ℛ̇̂
 ⃑(𝑥, 𝑧) ≥⋁[[1 − 𝜇

ℛ̇̂
 ⃑(𝑥, 𝑦)] . [ 1 − 𝜇

ℛ̇̂
 ⃑(𝑦, 𝑧)]]

𝑦

 

(25.22) 𝜇
ℛ̇̂
 ⃑( 𝑥, 𝑧) ≤∧𝑦 [𝜇

ℛ̇̂
 ⃑(𝑥, 𝑦) + 𝜇

ℛ̇̂
 ⃑(𝑦, 𝑧) − 𝜇

ℛ̇̂
 ⃑(𝑥, 𝑦). 𝜇

ℛ̇̂
 ⃑(𝑦, 𝑧)] 

(25.23) 𝜇
ℛ̇̂
 ⃑( 𝑥, 𝑧) ≤∧𝑦 [𝜇

ℛ̇̂
 ⃑(𝑥, 𝑦)+̂𝜇

ℛ̇̂
 ⃑(𝑦, 𝑧)] 
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Example 1. Consider again the example of Figure 26.1. In Figure 26.6 we have 

calculated the max-product transitive closure, that isℛ̇̂, The min-sum distances will then be 

given by the relationℛ̇̂
 ⃑
 for which one has 

Figure 25.7 gives the min-sum distances between the various elements. Thus 

𝛾(𝐶. 𝐸)=0.58. 

𝛾(𝐷, 𝐵)=0.4. 

 

Fig 25.7 

 

Fig 25.8 

Example 2. We take up again the example of Figure 26.5. A max-product 

composition shows immediately that 

(25.24) 𝛾(𝑥, 𝑦) = 𝜇
ℛ̇̂
 ⃑( 𝑥, 𝑦) = 1 − 𝜇

ℛ̇̂
 ⃑(𝑥, 𝑦) 

(25.25) ℛ̇̂ = ℛ 
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The relationℛ̇̂
 ⃑
 is given in Figure 26.8. 

One sees that 

and that, as a consequence, 

Remark. It appears that 𝛾(𝑥, 𝑦) gives a better practical idea of distance than 

𝑑(𝑥, 𝑦); this may be very important for all concerned with problems of resemblance, hence 

the interest that we have shown in the min-sum distance. But, as we shall go on to see in 

Figure 26.10 of the next section, decomposition into ordinary partial graphs is no longer 

possible. 

Theorem I. Let o be a resemblance relation. Then one always has 

that is 

Proof. On account of max-min transitivity one has 

From max-product transitivity one has 

But, according to (18.18), 

which implies 

that is 

where, we recall, indicates max-product composition and max-min composition. 

(25.26) 𝛾(𝑛1, 𝑛2) =
|𝑛2 − 𝑛1|

|𝑛2 − 𝑛1| + 1
 

(25.27) lim
|𝑛2−𝑛1|→∞

𝛾(𝑛1, 𝑛2) = 1 

(25.28) ℛ⃑̂ ⊂ ℛ̇̂
 ⃑
 

(25.29) ∀(𝑥, 𝑦): 𝑑(𝑥, 𝑦) ≤ 𝛾(𝑥, 𝑦) 

(25.20) 𝜇ℛ(𝑥, 𝑧) ≥∨𝑦 [𝜇ℛ(𝑥, 𝑦) ∧ 𝜇ℛ(𝑦, 𝑧)] 

(25.31) 𝜇ℛ(𝑥, 𝑧) ≥∨𝑦 [𝜇ℛ(𝑥, 𝑦) .  𝜇ℛ(𝑦, 𝑧)] 

(25.32) 𝜇ℛ(𝑥, 𝑦) ∧ 𝜇ℛ(𝑦, 𝑧) ≥ 𝜇ℛ(𝑥, 𝑦) .  𝜇ℛ(𝑦, 𝑧) 

(25.33) 
∨𝑦 [𝜇ℛ(𝑥, 𝑦) ∧ 𝜇ℛ(𝑦, 𝑧)] ≥∨𝑦 [𝜇ℛ(𝑥, 𝑦) .  𝜇ℛ(𝑦, 𝑧)]

𝑚𝑎𝑥 − 𝑚𝑖𝑛                            𝑚𝑎𝑥 − 𝑝𝑟𝑜𝑑𝑢𝑐𝑡
 

(25.34) ℛ .ℛ ⊂ ℛ ∘ ℛ 
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From here 

And thus 

Dissemblance relation. A relation ℛ such that 

is called a dissemblance relation, Figure 25.9 gives an example. 

 

Fig. 25.9 

We consider some evident properties, If is a resemblance relation, of is a 

dissemblance relation, and vice versa. 

Theorem II. If ℛ̂ is the max-min transitive closure account of the resemblance 

relation,ℛ thenℛ⃑̂  is the min-max transitive closure of the corresponding dissemblance 

relation. 

Proof. The max-min transitive closure is expressed by (17.8) and (17.3), thus 

and 

The min-max transitive closure will then be expressed by† 

and 

(25.35) ℛ̇̂ ⊂ ℛ̂ 

(25.36) ℛ⃑̂ ⊂ ℛ̇̂
 ⃑
 

(25.37) 1) ∀(𝑥, 𝑥) ∈ 𝐸 × 𝐸: 𝜇ℛ(𝑥, 𝑥) = 0    antireflexivity 

(25.38) 2) ∀(𝑥, 𝑦) ∈ 𝐸 × 𝐸: 𝜇ℛ(𝑥, 𝑦) = 𝜇ℛ(𝑥, 𝑦)    symmetry 

(25.39) ℛ̂ = ℛ ∪ ℛ2 ∪ ℛ3 ∪ … 

(25.40) 𝜇ℛ∘ℛ(𝑥, 𝑧) =∨𝑦 [𝜇ℛ(𝑥. 𝑦) ∧ 𝜇ℛ(𝑦, 𝑧)] 

(25.41) ℛ̆ = ℛ ∩ (ℛ ∘ ℛ) ∩ (ℛ ∘ ℛ ∘ ℛ) ∩ … (′) 

(25.42) 𝜇ℛ∘ℛ(𝑥, 𝑧) =∧𝑦 [𝜇ℛ(𝑥. 𝑦) ∨ 𝜇ℛ(𝑦, 𝑧)] 
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Let ℛ be a resemblance relation; ℛ̂ is a similitude relation; ℛ⃑  is a dissemblance relation 

and ℛ⃑ ̌is a dissimilitude relation. We show that 

We have already shown in (25.4)-(25.8) that if ℛis max-min transitive, thenℛ⃑  is min-max 

transitive, 

†One may denoteℛ ∘ ℛ = ℛ2, if there is no danger of confusion with the 

min operation andℛ ∘ ℛ ∘ … ∘ ℛ = ℛ𝑛 

We show now that 

In order to verify this, one proceeds as we did in (25.4)-(25.8): 

This proves (25.44). 

Now we write 

(applying De Morgan's theorem) 

(25.43) ℛ⃑̂ = ℛ⃑ ̌ 

(25.44) 
ℛ ∘ ℛ = ℛ ∘ ℛ

𝑚𝑎𝑥 − 𝑚𝑖𝑛     𝑚𝑖𝑛 −𝑚𝑎𝑥
 

(25.45) 𝜇ℛ∘ℛ(𝑥, 𝑧) =∨𝑦 [𝜇ℛ(𝑥, 𝑦) ∧ 𝜇ℛ(𝑦, 𝑧)] 

(25.46) 𝜇ℛ∘ℛ(𝑥, 𝑧) = 1 − 𝜇ℛ∘ℛ(𝑥, 𝑧) 

                                              = 1 −∨𝑦 [𝜇ℛ(𝑥, 𝑦) ∧ 𝜇ℛ(𝑦, 𝑧)] 

                                      =∧𝑦 [𝜇ℛ(𝑥, 𝑦) ∨ 𝜇ℛ(𝑦, 𝑧)] 

 = 𝜇ℛ∘ℛ(𝑥, 𝑧) 

(25.47) ℛ̂ = ℛ ∪ ℛ2 ∪ ℛ3 ∪ … 

                                = ℛ ∪ (ℛ ∘ ℛ) ∪ (ℛ ∘ ℛ ∘ ℛ) ∪ … 

                         = ℛ ∩ ℛ ∘ ℛ ∩ ℛ ∘ ℛ ∘ ℛ ∩ … 



133 
 

                                       = ℛ ∩ ℛ ∘ ℛ ∩ ℛ ∘ ℛ ∘ ℛ ∩ … 

[according to (25.44)] 

= ℛ̌. 

We shall see an example. We take again the resemblance relation given by Figure 

25.1, whose corresponding similitude relation has been given in Figure 25.2 and whose 

matrix of distances in Figure 25.3. We meet these relations again in the calculations that 

end inℛ̌ in Figures 25.10d-h. 

 

 

Fig. 25.10 

Theorem II.may be extended to the case of any relation, without imposing that it 

be a resemblance relation; the proof remains valid. Thus we may announce a more general 

theorem. 
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Theorem III.† Let ℛ̂be the max-min transitive closure of any fuzzy relation ℛ ⊂

𝐸 × 𝐸 whatever, and letℛ̌ be the min-max transitive closure ofℛ. Then 

This may also be expressed by writing: One may permute the order of the 

operations∧and−, but ∧becomes∨ (or vice versa) in the permutation. 

†We might have introduced this theorem earlier, in Section 17, hut with a didactic aim (not 

to overload any section, operating progressively), we report this useful and important 

theorem in Section 25, where we have a true need for the notion of distance. 

With respect to these, the reader may seek other interesting properties concerning 

the max-min and min-max transitive closures, which one may characterize as duals 

without being the object of reproach for using that word. 

27, VARIOUS PROPERTIES CONCERNING SIMILITUDE AND 

RESEMBLANCE 

Theorem of decomposition for a similitude relation. Letℛ be a similitude relation 

in 𝐸 × 𝐸. Thenℛ may be decomposed in the form 

where the ℛ𝛼, are equivalence relations in the sense of ordinary set theory and 𝛼ℛ𝛼 

indicates that all the elements of the ordinary relation ℛ𝛼 are multiplied by 𝛼. 

Proof. First, 𝜇ℛ(𝑥, 𝑥) =  1; it follows that (𝑥, 𝑥) ∈ ℛ𝛼 , for 𝛼 ∈ [0,1]; and thus ℛ𝛼 

has the property of reflexivity. 

Then, letting (𝑥, 𝑦) ∈ ℛ𝛼 , 𝛼 ∈ [0,1], this implies that 𝜇ℛ(𝑥, 𝑦) ≥ 𝛼 and𝜇ℛ(𝑦, 𝑧) ≥

𝛼, by the symmetry of ℛ. 𝜇ℛ(𝑦, 𝑥) ≥ 𝛼. Then,ℛ𝛼 has the property of symmetry. 

Finally, for all 𝛼 ∈ [0,1], suppose that (𝑥, 𝑦) ∈ ℛ𝛼, and (𝑦, 𝑧) ∈ ℛ𝛼 ; then 

𝜇ℛ(𝑥, 𝑦) ≥ 𝛼and 𝜇ℛ(𝑦, 𝑧) ≥ 𝛼, then by transitivity, 𝜇ℛ(𝑥, 𝑧) ≥ 𝛼 and also ℛ𝛼  is 

transitive, 

Then, ℛ𝛼, being reflexive, symmetric, and transitive, is an equivalence relation.  

The converse theorem is equally true. 

Converse.ℛ1, is nonempty, (𝑥, 𝑥) ∈ ℛ1, and also 

(25.48) ℛ̂ = ℛ̌ 

(27.1) ℛ =∨𝛼 𝛼. ℛ𝛼         0 < 𝛼 < 1 

 𝑤𝑖𝑡ℎ 𝛼1 > 𝛼2 ⇒ ℛ2 ⊃ ℛ1 
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thenℛ is a reflexive fuzzy relation. 

On the other hand, referring to (13.31), one may write 

It is evident that the symmetry of each ℛ𝛼, implies the symmetry of ℛ. 

Finally, let 

Then 

As a consequence 

becauseℛ𝛼>𝛽 is transitive. 

It follows that 

and also 

This with (27.2) and (27,3) proves the transitivity of ℛ. 

This converse allows the synthesis of similitude relations, as the direct theorem 

permits analysis, 

Interesting remark. It follows from this theorem that the ordinary relation closest 

to a similitude relation is an equivalence relation. This one may see immediately by 

considering what represents ℛ𝛼, when 𝛼 > 0,5, 

Examples. We now see the analysis of the relation given in Figure 20.1. The 

decomposition has been presented in Figure 27.1. 

 

(27.2) 𝜇ℛ(𝑥, 𝑥) = 1,    ∀𝑥 ∈ 𝐸, 

(27.3) ∀(𝑥, 𝑦) ∈ 𝐸 × 𝐸: 𝜇ℛ(𝑥, 𝑦) =∨𝛼 𝛼. 𝜇ℛ𝛼(𝑥, 𝑦) 

(27.4) 𝜇ℛ(𝑥, 𝑦) = 𝛼,  and 𝜇ℛ(𝑦, 𝑧) = 𝛽; 

(27.5) (𝑥, 𝑦) ∈ ℛ𝛼∧𝛽, and(𝑦, 𝑧) ∈ ℛ𝛼∧𝛽 

(27.6) (𝑥, 𝑧) ∈ ℛ𝛼∧𝛽 

(27.7) ∀𝑥, 𝑦, 𝑧 ∈ 𝐸: 𝜇ℛ(𝑥, 𝑧) ≥ 𝛼 ∧ 𝛽 

(27.8) 𝜇ℛ(𝑥, 𝑧) ≥  ∨𝑦 (𝜇ℛ(𝑥, 𝑦) ∧ 𝜇ℛ(𝑦, 𝑧)) 
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Fig. 27.1 

Next we consider an example of synthesis, Let the four equivalence relations be 

successively included in one another (Figure 27.2): 

 

Fig. 27.2 

One then has 



137 
 

The result is shown in Figure 27.3. 

 

Fig.27.3 

Another example is shown in Figure 27.4, where we have supposed that 𝑎 and 𝑏 ∈

[0,1]with 𝑎 < 𝑏. 

 

 

 

 

 

(27.9) ℛ = ∨ (0,2 . ℛ0,2 , 0,6 . ℛ0,6 , 0,8 . ℛ0,8 , 1. ℛ1) 
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Fig. 27.4 

Transitive graphs of distances. It is interesting to present for each similitude 

relation the transitive graphs corresponding to the min-max distances, some examples 

serve to demonstrate the interest. 

Example 1. Figure 27.5 gives an example of a dissimilitude relation. In Figure 27.6 

we have represented the transitive graphs corresponding to various distances. 

 

Fig 27.5 
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Fig. 27.6 Transitive graphs of distance 

Example 2. (Figures 27.7 and 27.8). This example is relative to the transitive 

closure (Figure 26.2) of the resemblance relation (Figure 26.1). The decomposition 

obtained will be compared to that of the following example (Figures 27.9 and 27.10). 

 

Fig. 27.7 

 

Fig. 27.8 Transitivity graphs of min-max distances 

Example 3. (Figures 27,9 and 27.10). The max-product transitive closure of the 

resemblance relation of Figure 26,1 has been obtained in Figure 26.6. For this, we have 
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drawn in Figure 26,7 the matrix of min-sum distances. The decomposition into ordinary 

graphs of distances that will not all be transitive appears in this example. It is an 

inconvenience to use the max-product transitive closure in a resemblance relation in 

comparison to the use of the max-min transitive closure. 

 

Fig. 27.9 
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Fig. 27.10 

Tree decomposition. A reader who examines Figure 27.1 is led to note that 

gradually as a takes the values 0,7, 0,8, 0,9, and 1, the partition of E into equivalence 
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classes includes more and more parts. This decomposition has been carried out according 

to a tree scheme, which has been represented in Figure 27.11. An ordered scheme such as 

this is called tree decomposition. 

Another example relative to Figure 27,4 is given in Figure 27.12. 

 

Fig. 27.11 

 

Fig. 27.12 

One may verify that two elements x and y belonging to E would belong to the same class 

of level 𝛼 if and only if 

This decomposition tree reflects the structure of the similitude relation well, or if 

one prefers, the groupings of elements by their transitive distances from one another. 

One may represent a tree in various manners. Using the notation of linguistics, one 

may write sequentially following the tree of Figure 27.11 

(27.10) 𝜇ℛ(𝑥, 𝑦) > 𝛼 
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Such a use of parentheses is not convenient. 

One may also use the notion of a pile and represent the tree (27.11) with the 

sequence: 0,7 (ABCDE) 0,8 (ABDE) 0,9 (ADE) 1 (AE) 0,9 (ADE) 1 (D) 0,9 (ADE) 0,8 

(ABDE) 0,9 (B) 1 (B) 0,9 (B) 0,8 (ABDE) 0,7 (ABCDE) 0,8 (C) 0,9 (C) 1 (C) 0,9 (C) 0,8 

(C) 0,7 (ABCDE). This notation is associated with the scheme known as Polish notation, 

It is easy to follow the sequence in Figure 27.11. 

 

Selection of the transitively nearest messages. One may consider a fuzzy subset as 

a message that is fuzzy instead of being binary.  

Consider an ordinary set F of fuzzy subsets A, belonging to the same reference set 

E: 

We have in mind the determination of which fuzzy subsets or fuzzy messages are 

transitively nearest. We shall make precise a little later the inconveniences of the notion of 

transitivity that will be considered, the advantages are at once apparent. 

We shall proceed as follows (and shall explain at the same time what is meant by 

transitively nearest): 

(1) For each pair (𝐴𝑖, 𝐴𝑗), 𝑖, 𝑗 = 1,2,… , 𝑛, evaluate the relative generalized 

Hamming distance†𝛿(𝐴𝑖, 𝐴𝑗); this gives a dissemblance relation≾. 

(2) Take the min-max transitive closure [that defined by (26.41)]. The 

relation≾̌obtained gives the min-max transitive distance: 

(3) Then decompose≾̌according to (27.1) and obtain the following ordinary subsets 

of F: 

transitively nearest messages for which one has 

transitively nearest messages for which one has 

(27.11) 0,7 (0,8(0,9(1{𝐴,𝐷}, 1{𝐸}), 0,9(1{𝐵})), 0,8(0,9(1{𝐶}))) 

(27.12) 𝐹 = {𝐴1, 𝐴2, … , 𝐴𝑛} 

(27.13) 𝛿̌(𝐴𝑖, 𝐴𝑗) 

(27.14) 𝛿̌(𝐴𝑖, 𝐴𝑗) = 0 

(27.15) 0 < 𝛿̌(𝐴𝑖, 𝐴𝑗) = 𝛼1 < 𝛼2 < ⋯ 
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transitively nearest messages for which one has 

†Or relative euclideandistance (𝐴𝑖, 𝐴𝑗), this depending on the nature of the problem, or 

even someother notion of distance. 

And so on. 

(4) Construct the corresponding composition tree. 

 

Example. Let E be a finite reference set with 𝑐𝑎𝑟𝑑(𝐸) = 7 and consider six 

subsets or messages 𝐴𝑖, 𝑖 = 1,2,… ,6. 

Then calculate the relative generalized Hamming distance: 

This gives the dissemblance relation ≾ (Figure 27,13a). One then calculates with the aid of 

(26.41) the min-max transitive closure≾, which gives the transitive distances 𝛿, (See 

Figures 27,14 and 27.15.) 

(27.16) 0 < 𝛼1 < 𝛿̌(𝐴𝑖, 𝐴𝑗) = 𝛼2 < 𝛼3 < ⋯ 

(27.17) 

 

(27.18) 𝛿(𝐴𝑖 , 𝐴𝑗) =
𝑑(𝐴𝑖, 𝐴𝑗)

7
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(a)          (b) 

Fig. 27.13 
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Fig. 27.15 

Important remark on the subject of transitive distance. Depending on the nature of 

the problem being treated, the min-max transitive closure of a distance matrix may not be 

significant in its practical employmen., We consider an example. Consider the 

following four messages: 

 

 

Fig. 27.16     Fig. 27.17 

The relative generalized Hamming distances for these messages are given in Figure 27.16, 

which then constitutes a dissemblance matrix ℛ. In Figure 27.17 we have calculated the 

min-max closure of ℛ, that is, ℛ̌. One sees then that all these messages are transitively 

equidistant. 
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This conception of min-max transitive distance may seem to be unacceptable in 

numerous applications. But the relative generalized Hamming distance is transitive for the 

ordinary min-addition operation, that is, 

Since, this is a distance, that is, 

One comes to the same conclusions for relative euclidean distance. 

Thus, any relation≾ giving the relative generalized Hamming distance (or relative 

euclidean distance) is a relation that is its own ordinary min-addition transitive closure. 

Note that the member on the right-hand side of (27.19) may give a sum greater than 1. 

since it is an ordinary addition, but this constrains nothing since the member on the left, by 

construction, always belongs to [0,1]. 

The decomposition by levels relative to values contained in the dissemblance 

relation will no longer give equivalence classes, but maximal subrelations, as we explain 

hereafter. 

Ordinary min-addition disimilitude. Decomposition into maximal subrelations. 

The relation (27.19) may be considered as a dissimilitude relation, which we may call 

ordinary min-addition dissimilitude. As may be seen in the example given in Figure 27.19. 

 

 

(27.19) 𝛿(𝑥, 𝑧) ≤ MIN
𝑦
[𝛿(𝑥, 𝑦) + 𝛿(𝑦, 𝑧)] 

(27.20) ∀𝑦: 𝛿(𝑥, 𝑧) ≤ 𝛿(𝑥, 𝑦) + 𝛿(𝑦, 𝑧) 
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Nondisjoint maximal similitude subrelations, 𝑑 ≤ 0,42 

Fig. 27.18 

one does not obtain for a distance 𝑑 ≤ 𝑘 (𝑘 arbitrary) ordinary graphs whose subgraphs 

constitute equivalence classes, Sometimes one may use a less strong concept, which is 

rather interesting for various operations, that of maximal subrelations-which may be or 

may not be disjoint. 

Take the case of Figure 27.19 and more particularly that of the ordinary symmetric 

graph corresponding to 𝑑 ≤ 0,42. In Figure 27.18 we have reproduced this ordinary graph 

and made evident three maximal subrelations or complete 

ordinary graphs, eachconstituting an equivalence relation. For each of these subrelations, 

the distance of each element to another is less than or equal to 0,42 and property (27.19) is 

verified. In general, such a decomposition may not be made without an appropriate 

algorithm, we give two of these in Appendix B, page 387. 

 

Remark. Ordinary min-addition dissimilitude is not dual to that of max-product 

similitude; it is algebraic min-sum dissimilitude that corresponds in this duality see 

(26.33)]. 

We shall see a completely developed example where there appear maximal sub 

relations. 

 

Example. We decompose the dissemblance relation (27.13a) (Figure 27.19) 
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 {1}, {2}, {3},  {1}, {2}, {3,5}   {1,2}, {3,5} 

 {4}, {5}, {6}   {4}, {6}   {4}, {6} 

 distance= 0  distance < 0,14           distance< 0,25 

Fig. 27.19 

 

 

 

{1,2}, {3,5}, {4,6}  {1,2}, {1,5}, {3,5}  {1,2}, {1,5}, {2,3} 

      {4,6}    {3,5}, {4,6} 

 distance< 0,27      distance< 0,28          distance< 0,31 
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{1,2}, {1,5}, {2,3}, {2,4}  {1,2,3}, {1,3,5}  {1,2,3}, {1,2,6}, {1,3,5} 

 {3,5}, {4,6}  {1,6}, {2,4}, {4,6}   {2,4,6} 

 distance< 0,32        distance< 0,34           distance< 0,40 

Fig. 27.19 (suite) 
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{1,2,3,5}, {1,2,6}  {1,2,4,6}, {1,2,3,5}  {1,2,3,5,6}, {1,2,4,6} 

 {2,4,6}  

 distance< 0,42          distance< 0,44           distance< 0,54 

 

 

  {1,2,3,5,6}, {1,2,3,4,6}   {1,2,3,4,5,6} 

  distance< 0,61            distance< 0,64 

Fig. 27.19 
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Finally, one may also use the algebraic min-sum (𝑎+̂𝑏 = 𝑎 + 𝑏 − 𝑎𝑏) transitivity 

to obtain the decomposition into maximal subrelations. 

By comparing Figures 27.14 and 27.19, one may see the advantages and 

inconveniences of using min-max transitivity on the one hand and min-addition transitivity 

on the other. The first gives equivalence classes that are formed gradually depending on a, 

in contrast, interpretation is very debatable. The other gives only maximal subrelations that 

are not generally disjoint; but the interpretation is incontestable, particularly as concerns 

applications in the domain of classification of structures. 

28. VARIOUS PROPERTIES OF FUZZY PERFECT ORDER RELATIONS 

 

Decomposition theorem for a fuzzy perfect order relation. Let be a fuzzy perfect 

order relation in 𝐸 ×  𝐸. The ℛmay be decomposed in the form 

With 𝛼1 ≥ 𝛼2 ⇒ ℛ𝛼1 ⊂ ℛ𝛼2 

where the ℛ𝛼 are order relations in the sense of the theory of ordinary sets, and 𝛼.ℛ𝛼 

expresses the product of all elements of ℛ𝛼by the quantity 𝛼. 

 

Proof. Reflexivity and transitivity of ℛ𝛼 are proved as was (27.1) in Section 27. 

We shall see that this happens also for perfect antisymmetry according to (22.8). 

In order to show the antisymmetry of ℛ𝛼 we remark first that, sinceℛ𝛼 is reflexive, 

one may replace the definition 

by 

We shall reason by contradiction. 

Suppose that (𝑥, 𝑦) ∈ ℛ𝛼and (𝑦, 𝑥) ∈ ℛ𝛼 . Then 𝜇ℛ(𝑥, 𝑦) ≥ 𝛼and 𝜇ℛ(𝑦, 𝑥) ≥ 𝛼. 

Thus by the antisymmetryof ℛ. 𝑥 = 𝑦. Conversely, suppose 𝜇ℛ(𝑥, 𝑦) = 𝛼 >

0and.𝜇ℛ(𝑦, 𝑥) = 𝛽 ≥ 0.Put 𝛾 = 𝛼 ≥ 𝛽. Then (𝑥, 𝑦) ∈ ℛ𝛾and (𝑦, 𝑥) ∈ ℛ𝛾, and from the 

antisymmetry of ℛ𝛾, it follows that 𝑥 = 𝑦. But one may not have 𝑥 ≠ 𝑦 with these 

hypotheses. 

 

(28.1) ℛ =∨𝛼 𝛼.ℛ𝛼 ,   0 < 𝛼 ≤ 1 

(28.2) 𝜇ℛ(𝑥, 𝑦) > 0 ⇒ 𝜇ℛ(𝑦, 𝑥) = 0 

(28.3) (𝜇ℛ(𝑥, 𝑦) > 0   𝑎𝑛𝑑   𝜇ℛ(𝑦, 𝑥) = 0) ⇒ (𝑥 = 𝑦) 
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Example 1. Figure 28.1 represents a decomposition of a fuzzy perfect order 

relation. To simplify reading of the results, we have omitted the zeros, Beneath each ℛ𝛼 

wehave placed a sketch representing the ordinary antisymmetric graph. 

Fig. 28.1 
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Example 2. We see how to realize a synthesis of a perfect order relation (Figure 

28.2). 

 

Fig. 28.2 

Extension of the decomposition property to the case of a reducible preorder 

whose similitude classes are perfectly ordered. Properties (27.1) and (28.1) are combined 

whenever one considers a reducible preorder whose similitude classes constitute a perfect 

order. 
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Example. Figure 28.3 (pp. 163-164) gives an example of such a decomposition. In 

this figure the zeros are omitted to allow rapid examination. On the other hand, there are 

numerous elements and similitude classes for which the properties are readily apparent. 

Fig. 28.3 
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Fig. 28.3 

Another example of synthesis. See Figure 28.4. Figure 28.5 illustrates the block- 

triangular form of the preorder. 
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Fig. 28.4 

 

Fig. 28.5 

Perfect total order induced in a perfect partial order by the ordinal function (ease 

where E is finite).†Recalling what we have seen in Section 24, we take up again the 

example of Figure 28.3 and seek an ordinal function for the ordinary graph representing 

the order of the classes, consider the graph of Figure 28.6 in which appear three levels 

𝑁0, 𝑁1, 𝑁2. 

 

In this figure a class 𝐶𝑖 is represented by its index 𝑖 = 1,2, … ,6. 

Fig. 28.6 

These levels induce in the set of classes {𝐶1, 𝐶2, … , 𝐶6} a (nonunique) total order 

such that, with respect to this order, the fuzzy relation takes a block-triangular form. 
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In this figure a class 𝐶𝑖 is represented by its index 𝑖 = 1,2, … ,6. 

Fig. 28.7 

†This property in prevented by certain authors under the name of the theorem of Szpilrajn. 

The introduction of the notion of the ordinal function of a graph avoids the rather delicate 

proof of this theorem. This is one of the advantages among many others of this important 

notion of ordinal function. 

 

Figure 28,7 represents the results obtained in taking the total order 

𝐶1 ≻ 𝐶5 ≻ 𝐶4 ≻ 𝐶2 ≻ 𝐶6 ≻ 𝐶3 

with which one obtains a half-matrix of zeros below the diagonal of these blocks. 

By choosing a total order in an ordinal function numbered from right to left, 

onewould obtain a half-matrix of zeros above the diagonal of the blocks.  

This we summarize in an example generalizable to all cases conforming to the title 

of this subsection. 

PROPERTIES OF THE PRINCIPAL FUZZY RELATIONS 

 Reflexivity 
Anti 

reflexivity 

Max-min 

transitivity 

Min-max 

transitivity 
Symmetry 

Anti-

symmetry 

Does 

not 

possess 

circuits 

other 

than 

loops 
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29. COMMON MEMBERSHIP FUNCTIONS 

 

In the tables that follow we have presented various continuous membership 

functions that are useful for representing numerical fuzzy subsets corresponding to the 

following fuzzy propositions: 

𝑥is small (29.1)-(29.7) 

𝑥 is large (29.8)-(29,14) 

|𝑥|is small (29.15)-(29.21) 

|𝑥|is large (29.22)-(29.28) 

With respect to these one may construct numerical fuzzy subsets relative to two 

variables. We shall show how to proceed. Also in the same section we shall show how to 

analyze or synthesize transitive fuzzy relations. 

REFERENCE SETS: 𝑅+. 𝑁 

MEMBERSHIP FUNCTION CORRESPONDING TO "𝑥 IS SMALL" 

Preorder Yes  Yes     

Similitude Yes  yes  Yes   

Dissimilitude  Yes  yes Yes   

Ressemblance Yes    Yes   

Dissemblance  Yes   Yes   

Ordinate Yes     Yes Yes 

Nonstrict 

order 
Yes  Yes   Yes Yes 

Strict order  Yes Yes   yes Yes 

 Domain Curve Function 

(29.1) 
R+ 

N 

 

 

 

𝜇(𝑥) = 1,0 ≤ 𝑥 ≤ 𝑎 

          = 0, 𝑥 > 𝑎 
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(29.2)  
R+ 

N 

 

 

𝜇(𝑥) = 𝑒−𝑘𝑥 , 𝑘 > 0 

(29.3) 
R+ 

N 

 

 

𝜇(𝑥) = 𝑒−𝑘𝑥
2
, 𝑘 > 0 

(29.4) 
R+ 

N 

 

 

𝜇(𝑥) = 1,0 ≤ 𝑥 ≤ 𝑎1 

=
𝑎2 − 𝑥

𝑎2 − 𝑎1
, 𝑎1 ≤ 𝑥 ≤ 𝑎2 

= 0, 𝑎2 ≤ 𝑥 

(29.5) 
R+ 

N 

 

 

𝜇(𝑥) = 1 − 𝑎𝑥2, 0 ≤ 𝑥 ≤
1

√𝑎
𝑘  

= 0,
1

√𝑎
𝑘 < 𝑥 

(29.6) 
R+ 

N 

 

 

𝜇(𝑥) =
1

1 + 𝑘𝑥2
, 𝑘 > 1 
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REFERENCE SETS: R+.N 

MEMBERSHIP FUNCTION CORRESPONDING TO “a IS LARGE” 

(29.7) 
R+ 

N 

 

𝜇 (𝑥) = 1,0 ≤ 𝑥 ≤ 𝑎 

=
1

2
−
1

2
sin

𝑥

𝑏 − 𝑎
(𝑥 −

𝑎 + 𝑏

2
) 

𝑎 ≤ 𝑥 ≤ 𝑏 

= 0, 𝑏 < 𝑥 

 Domain Curve Function 

(29.8) 
R+ 

N 

 

 

 

𝜇(𝑥) = 0,0 ≤ 𝑥 < 𝑎 

          = 1, 𝑎 < 𝑥 

(29.9)  
R+ 

N 

 

 

𝜇(𝑥) = 0,0 ≤ 𝑥 ≤ 𝑎 

= 1 − 𝑒−𝑘(𝑥−𝑎), 𝑎 < 𝑥 

𝑥 > 0 

(29.10) 
R+ 

N 

 

 

𝜇(𝑥) = 0,0 ≤ 𝑥 ≤ 𝑎 

= 1 − 𝑒−𝑘(𝑥−𝑎)
2
, 𝑎 ≤ 𝑥 

𝑘 > 0 

(29.11) 
R+ 

N 
 

𝜇(𝑥) = 0,0 ≤ 𝑥 ≤ 𝑎1 

=
𝑥 − 𝑎1
𝑎2 − 𝑎1

, 𝑎1 ≤ 𝑥 ≤ 𝑎2 
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= 1, 𝑎2 ≤ 𝑥 

(29.12) 
R+ 

N 

 

 

𝜇(𝑥) = 0,0 ≤ 𝑥 ≤ 𝑎 

= 𝑎(𝑥 − 𝑎)2, 𝑎 ≤ 𝑥

≤ 𝑎 +
1

√𝑎
𝑘  

= 1, 𝑎 +
1

√𝑎
𝑘 ≤ 𝑥 

(29.13) 
R+ 

N 

 

 

𝜇(𝑥) = 0,0 < 𝑥 < 𝑎 

=
𝑘(𝑥 − 𝑎)2

1 + 𝑘(𝑥 − 𝑎)2
, 𝑎 ≤ 𝑥

< ∞ 

(29.14) 
R+ 

N 

 

 

𝜇 (𝑥) = 0,0 ≤ 𝑥 ≤ 𝑎 

=
1

2
−
1

2
sin

𝑥

𝑏 − 𝑎
(𝑥

−
𝑎 + 𝑏

2
) 

𝑎 < 𝑥 < 𝑏 

= 01 𝑎 < 𝑥 
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REFERENCE SETS: R,Z 

MEMBERSHIP FUNCTION CORRESPONDIND TO “|𝑋| 𝐼𝑆 𝑆𝑀𝐴𝐿𝐿” 

 Domain Curve Function 

(29.15) 
R 

Z 

 

 

 

𝜇(𝑥) = 0, −∞ ≤ 𝑥 < 𝑎 

          = 1,−𝑎 < 𝑥 < 𝑎 

          = 0, 𝑎 < 𝑥 

(29.16)  
R 

Z 

 

 

𝜇(𝑥) = 𝑒𝑘𝑥 , −∞ < 𝑥 < 0 

= 𝑒−𝑘𝑥 , 0 < 𝑥 < ∞ 

𝑘 > 1 

 

(29.17) 
R 

Z 

 

 

 

 

𝜇(𝑥) = 𝑒−𝑘𝑥
2
 

 

(29.18) 
R 

Z 
 

𝜇(𝑥) = 0,∞ ≤ 𝑥 ≤ 𝑎2 

=
𝑎2 + 𝑥

𝑎2 − 𝑎1
, −𝑎2 ≤ 𝑥 ≤ 𝑎1 

= 1, 𝑎2 ≤ 𝑥 < 𝑎1 
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=
𝑎2 − 𝑥

𝑎2 − 𝑎1
, 𝑎1 < 𝑥 < 𝑎2 

= 0, 𝑎2 < 𝑥 < ∞ 

(29.19) 
R 

Z 

 

 

 

𝜇(𝑥) = 0, −∞ < 𝑥

≤ −
1

√𝑎
𝑘  

= 1 − 𝑎(−𝑥)𝑘, −
1

√𝑎
𝑘 < 𝑥

< 0 

= 1 − 𝑎(𝑥)𝑘, 0 < 𝑥 <
1

√𝑎
𝑘  

= 0,
1

√𝑎
𝑘 < 𝑥 < ∞ 

(29.20) 
R 

Z 

 

 

 

 

𝜇(𝑥) =
1

1 + 𝑘𝑥2
, 𝑘 > 1 
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REFERENCE SETS: R,Z 

MEMBERSHIP FUNCTION TO “|𝑋| IS LARGE” 

(29.21) 
R 

Z 

 

𝜇(𝑥) = 0,−∞ < 𝑥 < −𝑏 

=
1

2

+
1

2
sin

𝑥

𝑏 − 𝑎
(𝑥 +

𝑎 + 𝑏

2
)

, −𝑏 ≤ 𝑥 < −𝑎
 

= 1,−𝑎 < 𝑥 < 𝑎 

=
1

2

+
1

2
sin

𝑥

𝑏 − 𝑎
(𝑥 +

𝑎 + 𝑏

2
)

, −𝑏 ≤ 𝑥 < −𝑎
 

 

 Domain Curve Function 

(29.22) 
R 

Z 

 

 

 

𝜇(𝑥) = 1,−∞ ≤ 𝑥 < −𝑎 

          = 0, −𝑎 < 𝑥 < 𝑎 

          = 1, 𝑎 < 𝑥 < ∞ 

(29.23)  
R 

Z 

 

 

𝜇(𝑥) = 1 − 𝑒𝑘𝑥 , −∞ < 𝑥

< 0 

= 1 − 𝑒−𝑘𝑥 , 0 < 𝑥 < ∞ 

𝑘 > 1 

 

(29.24) 
R 

Z 

 

 

𝜇(𝑥) = 1 − 𝑒−𝑘𝑥
2
, k > 1 
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(29.25) 
R 

Z 

 

 

 

𝜇(𝑥) = 1,−∞ ≤ 𝑥 ≤ −𝑎2 

= −
𝑥 + 𝑎1
𝑎2 − 𝑎1

, −𝑎2 ≤ 𝑥

≤ 𝑎1 

= 0,−𝑎1 ≤ 𝑥 < 𝑎1 

=
𝑥 − 𝑎1
𝑎2 − 𝑎1

, 𝑎1 < 𝑥 < 𝑎2 

= 1, 𝑎1 < 𝑥 < ∞ 

(29.26) 
R 

Z 

 

 

 

𝜇(𝑥) = 1, −∞ < 𝑥

≤ −
1

√𝑎
𝑘  

= 𝑎(−𝑥)𝑘, −
1

√𝑎
𝑘 < 𝑥 < 0 

= 𝑎(𝑥)𝑘, 0 < 𝑥 <
1

√𝑎
𝑘  

= 0,
1

√𝑎
𝑘 < 𝑥 < ∞ 

(29.27) 
R 

Z 
 

𝜇(𝑥) =
𝑘𝑥2

1 + 𝑘𝑥2

=
1

1 +
1

𝑘𝑥2

, 𝑘 > 1 
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REFERENCE SETS 𝑅+ × 𝑅+, 𝑅 × 𝑅, 𝑁 × 𝑁, 𝑍 × 𝑍 

 

A. Cylindrical membership functions,† of the type 

corresponding to "𝑥2 + 𝑦2 has property𝒫. 

Take the curves and functions (29.1)-(29.14) and replace 

𝑥 𝑏𝑦 𝜌 = √𝑥2 + 𝑦2 

For (29.1)-(29.14), property 𝒫will be 

𝑥2 + 𝑦2 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙 

𝑜𝑟 𝑥 𝑎𝑛𝑑 𝑦 𝑎𝑟𝑒 𝑠𝑚𝑎𝑙𝑙 

For (28.8)-(29.14), property 𝒫will be 

 

 

(29.28) 
R 

Z 

 

𝜇(𝑥) = 1,−∞ < 𝑥 < −𝑏 

=
1

2

−
1

2
sin

𝑥

𝑏 − 𝑎
(𝑥 +

𝑎 + 𝑏

2
)

, −𝑏 ≤ 𝑥 < −𝑎
 

= 0,−𝑎 < 𝑥 < 𝑎 

=
1

2

+
1

2
sin

𝑥

𝑏 − 𝑎
(𝑥 +

𝑎 + 𝑏

2
)

, 𝑎 ≤ 𝑥 < 𝑏
 

= 1, 𝑏 < 𝑥 < ∞ 

 

(29.29) 𝜇(𝑥, 𝑦) = 𝑓(𝑥2 + 𝑦2) 
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𝑥2 + 𝑦2 𝑖𝑠 𝑙𝑎𝑟𝑔𝑒 

𝑜𝑟 𝑥 𝑎𝑛𝑑 𝑦 𝑎𝑟𝑒 𝑙𝑎𝑟𝑔𝑒 

Example. With reference to (29.6), one may see 

B. Hyperbolic membership functions, of the type 

Or 

corresponding to |𝑦 − 𝑥| or |𝑦2 − 𝑥2| have property𝒫. 

Take the curves and functions of (29.1)-(29,14) and replace 

or 

𝜌 = √|𝑦2 − 𝑥2| 

For (29.1)-(29.7), property𝒫 will be 

𝑦 𝑖𝑠 𝑣𝑒𝑟𝑦 𝑛𝑒𝑎𝑟 𝑥 

For (29.8)-(29.14), it will be 

𝑦 𝑖𝑠 𝑣𝑒𝑟𝑦 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑡ℎ𝑎𝑛 𝑥 

One may also me 𝜌 = |𝑦 − 𝑘𝑥| with & sufficiently large and reversing the opposite 

properties above. 

Remark.- One knows that 

(29.30) 𝜇(𝑥, 𝑦) =
1

1 + 𝑘(𝑥2 + 𝑦2)
 

(29.31) 𝜇(𝑥, 𝑦) = 𝑓(|𝑦 − 𝑥|) 

(29.32) 𝜇(𝑥, 𝑦) = 𝑓(|𝑦2 − 𝑥2|) 

(29.33) 𝑥 𝑏𝑦 𝜌 = |𝑦 − 𝑥| 

(29.34) 𝑒−𝑢 =
1

1 + 𝑢 +
𝑢2

2!
+
𝑢3

3!
+⋯
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Thus, the functions. 

†We shall find it convenient to describe it so, 

will give similar results, taking these as membership functions when 𝑢 = 𝜙(𝑥),𝑢 =

(√𝑥2 + 𝑦2), 𝑢 = 𝜙(√|𝑦2 − 𝑥2|) and similarly for the other variables.  

Determination of the property of max-min transitivity in the case of continuous 

membership function of a relation. It is generally very easy to evaluate a membership 

function 𝜇ℛ(𝑥, 𝑦) if it presents one of the following properties: 

Reflexivity, 

Symmetry, 

Antisymmetry. 

But it is generally much less easy to be concerned with transitivity. We shall first consider 

max-min transitivity, then max-product transitivity.† 

Recall that max-min transitivity is expressed by the property 

 . 

In Figure 29.1 we have shown how to obtain the member on the right of (29.36), In 

this example there is a single intersection point between 𝜇ℛ(𝑥, 𝑦) and𝜇ℛ(𝑦, 𝑧) when x and 

z are taken as parameters, there may exist several in other cases, but each time one 

determines the maximum 𝑦𝑚. In the sequel it is convenient to proceed in the following 

fashion: 

(29.35) 𝑒−𝑢 𝑒𝑡
1

1 + 𝑢
 

(29.36) 𝜇ℛ(𝑥, 𝑧) > 𝑉𝑦|𝜇ℛ(𝑥, 𝑦) ∧ 𝜇ℛ(𝑦, 𝑧)|. 
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The solid curve gives 

𝜇ℛ(𝑥, 𝑦) ∧ 𝜇ℛ(𝑦, 𝑧) 

Fig 29.1 

(1)  Determine the point 𝑦𝑀  as a function of 𝑥 and𝑧 such that 

(2) Substitute the value of 𝑦𝑀as a function of 𝑥 and 𝑧 into 𝜇ℛ(𝑥, 𝑦𝑀) or 

in𝜇ℛ(𝑦𝑀 , 𝑧), this gives a function 𝜆(𝑥, 𝑧). 

(3) Compare 𝜆(𝑥, 𝑧)to 𝜇ℛ(𝑥, 𝑧). If  

then the relationℛ is transitive. If 

†One may easily pass to proofs involving min-max tramitivity and min-sum transitinity, or 

even ordinary min addition, 

then the relation ℛ is not transitive, 

We consider several examples. 

Example 1. Consider the fuzzy relation ℛ defined for 𝑥 ∈ 𝑅+and 𝑦 ∈ 𝑅+: 

 

(29.37) 𝜇ℛ(𝑥, 𝑦𝑀) = 𝜇ℛ(𝑦𝑀 , 𝑧) 

(29.38) ∀(𝑥, 𝑧) ∶  𝜇ℛ(𝑥, 𝑧) > 𝜆(𝑥, 𝑧) 

(29.39) ∃ (𝑥, 𝑧) ∶  𝜇ℛ(𝑥, 𝑧) < 𝜆(𝑥, 𝑧) 

(29.40) 

𝜇ℛ(𝑥, 𝑦) = 𝑒
−𝑥 , 𝑦 < 𝑥 

= 1, 𝑦 = 𝑥 

= 𝑒−𝑦, 𝑦 > 𝑥 
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In Figure 29.2 we have represented, as a function of 𝑦, the function 𝜇ℛ(𝑥, 𝑦)(x 

taken as a parameter) and 𝜇ℛ(𝑥, 𝑦)( 𝑧 taken as a parameter) in the cases where 𝑥 < 𝑧 

(Figure 29.2a) and 𝑥 > 𝑧(Figure 29.2b). In these figures 𝐴𝐵𝐶𝐷 represents 𝜇ℛ(𝑥, 𝑦) (with 

xas parameter) and𝐴′𝐵′𝐶𝐷 represents 𝜇ℛ(𝑦, 𝑧) (with 𝑧 as parameter). 

 

Fig. 29.2 

In the 𝑥 < 𝑧 case the max-min is equal to 𝑒−𝑧, and in the 𝑥 > 𝑧 case the max-min 

is equal to𝑒−𝑥. Thus, one may write 

Compare 𝜆(𝑥, 𝑧) with 𝜇ℛ(𝑥, 𝑧) given by (29.40) where 𝑧replaces 𝑦: 

By comparing one sees that 

 

Thenℛ is a transitive relation. We note that this relation is a similitude relation. 

In Figure 29.3 we have represented with the aid of a matrix the fuzzy relation 

corresponding to (29.40) but using 𝑁 instead of 𝑅+. This shows the particular arrangement 

of the values of the membership function. The reader should involve himself in applying 

(29.41) 
 𝜆(𝑥, 𝑧) = 𝑒−𝑧 , 𝑥 ≤ 𝑧 

               = 𝑒−𝑥 , 𝑥 ≥ 𝑧 

(29.42) 

𝜇ℛ(𝑥, 𝑧) = 𝑒
−𝑧 , 𝑥 < 𝑧 

                   = 1 , 𝑥 = 𝑧 

                   = 𝑒−𝑥 , 𝑥 > 𝑧 

(29.43) 𝜇ℛ(𝑥, 𝑧) = 𝜆(𝑥, 𝑧), 𝑥 ≠ 𝑧, 

(29.44) 𝜇ℛ(𝑥, 𝑧) > 𝜆(𝑥, 𝑧), 𝑥 = 𝑧, 
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and verifying transitivity in this case using (29.36). The row-by-column max- min 

operation will permit one to check (29.43) and (29.44), 

 

Fig. 29.3 

 

Example 2. Consider the fuzzy relation ℛdefined for𝑥 ∈ 𝑅and 𝑦 ∈ 𝑅: 

 

Fig. 29.4 

One finds easily 

Thus 

(29.45) 𝜇ℛ(𝑥, 𝑦) = 𝑒
−(𝑥−𝑦)2 ∶ 

(29.46) 𝑒−(𝑥−𝑦𝑀)
2
= 𝑒−(𝑦𝑀−𝑧)

2
 

(29.47) 𝑥 − 𝑦𝑀 = 𝑦𝑀 − 𝑧 
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or 

See Figure 29.4. Putting this value in the member on the right of (29.45), we have 

And we see that 

that is 

Thus, this relationℛ is not transitive. We note that sometimes this is a resemblancerelation.  

If Figure 29.5 we have represented the corresponding relation ℛbut 

using 𝑁 instead of 𝑅+. 

 

Fig. 29.5 

Example 3. Consider the fuzzy relation ℛ defined for x\in R^{+} y\in R^{+} 

Figure 29.6 shows that the min-max corresponds to 𝑦𝑀 = 𝑧. Whence 

(29.48) 𝑦𝑀 =
𝑥 + 𝑧

2
 

(29.49) 
𝜆(𝑥, 𝑧) = 𝑒−(𝑥−𝑦𝑀)

2
 

              = 𝑒−
(𝑥−𝑧)2

4  

(29.50) ∀(𝑥, 𝑧): 𝑒−(𝑥−𝑧)
2
≤ 𝑒−

(𝑥−𝑧)2

4  

(29.51) ∀(𝑥, 𝑧) ∶  𝜇ℛ(𝑥, 𝑧) ≤ 𝜆(𝑥, 𝑧) 

(29.52) 
𝜇ℛ(𝑥, 𝑦) =

𝑥𝑦

1 + 𝑥𝑦
, 𝑦 > 𝑥 

                   = 0, 𝑦 ≤ 𝑥 

(29.53) 

𝜆(𝑥, 𝑦𝑀) = 𝜆(𝑥, 𝑧), 

                 =
𝑥𝑧

1 + 𝑥𝑧
, 𝑧 > 𝑥 

                 = 0, 𝑧 < 𝑥 
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Fig. 29.6 

We see that 

Thus the relationℛ is indeed transitive. One may also verify that this telation is a total 

fuzzy order. 

Figure 29.7 represents the corresponding relation with 𝑅+ replaced by 𝑁. 

Remark on the synthesis of a transitive fuzzy relation. If the analysis of a fuzzy 

relation in 𝑅 or 𝑅+ is not very easy, as we have seen, its synthesis is even more difficult 

except in ceftain very simple particular cases. Thus, a good method consists in carrying out 

the synthesis of the relation in 𝑁, and then passing from there to𝑅 or 𝑅+. 

The decomposition theorem for a similitude relation (Section 27) and that for a 

perfect order relation (Section 28) allow the easy synthesis of the corresponding relations. 

One may provide an algorithm. 

 

 

Algorithm for construction of a fuzzy transitive relation in a denumerable set. 

 

(1) We are given a sequence, finite or not, of numbers 𝑥𝑖 ∈ [0,1], strictly ordered 

on 𝑖: 

(29.54) 𝜇ℛ(𝑥, 𝑧) = 𝜆(𝑥, 𝑧) 

(29.55) 1 > 𝑎1 > 𝑎2 > ⋯ > 𝑎𝑟 > ⋯ > 0. 
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Fig. 29.7 

Step-by-step construct a transitive ordinary graph by enriching the arcs, always 

maintaining transitivity. To each passage from a transitive graph to a transitive graph 

richer in arcs, this constituting a step, associate with the corresponding arcs of the fuzzy 

graph the value 𝑎𝑖+1that follows the preceding 𝑎𝑖 , value. The finite fuzzy graph obtained 

by stopping at step 𝑖 is transitive; if the procedure is not stopped at a finite number, one 

obtains an infinite graph that is transitive. 

Example. Consider the infinite sequence: 

We propose to construct a transitive and antireflexivefuzzy graph having perfect 

antisymmetry. The construction will be carried out according to the order indicated in 

Figure 29.8, where the addition of arcs is arbitrary except that, at each step, transitivity 

must be maintained, In Figure 29.9 one may see how to construct the fuzzy graph. 

The same procedure may be used for preorders, similitudes, orders, etc. 

From the matrix obtained one may see the corresponding relationℛ of to be 

obtained for 𝑅+ and eventually for 𝑅. This is not, evidently, always easy. 

(29.56) 1 >
1

2
>
1

3
>
1

4
> ⋯ >

1

𝑟
> ⋯ > 0. 
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Fig. 29.8 

 

Fig. 29.9 

 

UNIT IV 

FUZZY LOGIC 

29. INTRODUCTION 

 To associate the word fuzzy with the word logic is shocking.  Logic, in the ordinary 

sense of the word, is a conceptualization of the mechanisms of thought, one that may never 

be fuzzy, but always rigorous and formal.  Mathematicians researching these mechanisms 
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of thought have noted, however, that it is not a matter of having, in fact, one unique logic 

(for example, Boolean logic).  This unit stimulate the imagination of the readers so that 

they will go much further than what is modestly presented here. 

30. CHARACTERISTIC FUNCTION OF A FUZZY SUBSET FUZZY VARIABLES 

Let 𝜇𝐴
~
  (𝑥) be the membership function of the element 𝑥 in the fuzzy subset 𝐴

~
 .  In 

Section 2-8 we have defined the principal operations that may be realized in considering 

fuzzy subsets with the same reference set. 

 In the present chapter, we shall suppose that the membership set is always (30.1) 

M = [0,1]. 

Previously, we have recalled how to carry out the operations of a binary Boolean 

algebra with respect to the algebraic operations of ordinary subsets. 

 We shall use the following notation: 

(30.2)     𝑎 =  𝜇𝐴 (x),  𝑏 =  𝜇𝐵  (x), etc. 

We know that in Boolean binary algebras the variables, such as a, b,  . . . .  may 

take only the values 0 or 1.  The correspondence between the operations of ser theory and 

those of Boolean binary algebra is reviewed below: 

 

 

 

(30.3) 

 (30.4) 

(30.5) 

(30.6) 

 

 

 The principal correspondences that we see in (32.3) – (32.6) constitute a didactic 

introduction to what follows, and will hold not only for boolean characteristic functions 

and membership functions with M = [0,1] but also for fuzzy functions with M = [0,1]. 

 Let x be an element of the reference set E and let 𝐴
~

 , 𝐵
~

, . . . be fuzzy subsets of this 

reference set.  Put 

(30.7)   𝑎
~
=  𝜇𝐴

~
(𝑥),  𝑏

~
=  𝜇𝐵

~
(𝑥) … . .   𝑎

~
 , 𝑏
~

 . . . . ∈M = [0,1]. 

Subsets Corresponding operations 

𝐴 ∩ 𝐵. a, b. 

𝐴 ∪ 𝐵. a + b. 

𝐴̃ =   𝐶𝐸A . 𝑎̃. 

𝐴 + 𝐵 = (𝐴̃ ∩ 𝐵) ∪ (𝐴 ∩ 𝐵̃ 𝑎 + 𝑏 = 𝑎̃ , 𝑏 +  𝑎, 𝑏̃ 
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We shall define, with respect to what was given in Sections 2-8, the following operations 

for the quantities, 𝑎, 𝑏 . . . . . 

(30.8)    𝑎
~
∧ 𝑏

~
 =  MIN  (𝑎

~
 , 𝑏
~
 ). 

(30.9)    𝑎
~
 v 𝑏
~
 =  MAX  (𝑎

~
 , 𝑏
~
 ). 

(30.10)  𝑎
~
̅ = 1 − 𝑎

~
 . 

31. CHARACTERISTIC FUNCTION OF FUZZY SUBSET 

(31.11)   𝑎
~
 ⨁  𝑏

~
  =  (𝑎

~
̅ ∧  𝑏

~
 ) v (𝑎

~
∧ 𝑏

~
̅ ) . 

  

 

(31. 12)  }
𝑎
~
 v 𝑏
~
 − 𝑏
~
 v 𝑎
~
 .

𝑎
~
 ∧ 𝑏
~
 = 𝑏
~
∧ 𝑎
~
 .

  commutativity 

(31.13)  

(31.14)   }
(𝑎
~
 v 𝑏
~
 ) v 𝑐

~
 = 𝑎
~
 v (𝑏

~
 v 𝑐
~
 ) .

(𝑎
~
 ∧ 𝑏
~
 ) ∧ 𝑐

~
 = 𝑎
~
 ∧ (𝑏

~
 ∧ 𝑐
~
 ) .

  associativity 

(31.15) 

(31.16)    }𝑎
~
 v 𝑎
~
 = 𝑎
~
 .

𝑎
~
 ∧ 𝑎
~
 = 𝑎
~
 .

  idempotence 

(31.17)  

(31.18)   }
𝑎
~
 v (𝑏

~
 ∧ 𝑐
~
 )  =  (𝑎

~
 v 𝑏
~
 ) v (𝑎

~
 v 𝑐
~
 ) .

𝑎
~
 ∧ (𝑏

~
 v 𝑐
~
 )  =  (𝑎

~
 ∧ 𝑏
~
 ) v (𝑎

~
 ∧ 𝑐
~
 ) .

  Distributivity 

(31.19) 

 

(31.20)   𝑎
~
∧  0 = 0. 

(31.21)  𝑎
~
 v 0 =  𝑎

~
. 

(31.22)   𝑎
~
∧  1 = 𝑎

~
. 

(31.23)  𝑎
~
 v 1 = 1. 

(31.24)   (𝑎
~
̅ ) = 𝑎

~
. 

(31.25)  }
𝑎
~
 v 𝑏
~
 = 𝑎
~
  ∧ 𝑏

~
   .

𝑎
~
 ∧ 𝑏
~
 = 𝑎
~
  v 𝑏

~
  .

  
Do Morgan′s theorems

generalized to the case where M =  [0,1].
 

(31.26) 
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The proofs of all these formulas are trivial except perhaps those of (31.18), (31.19), 

(31.25), and 31.26). 

 

We shall prove (31.18).  For this, we suppose that the quantities 𝑎
~
, 𝑏
~

 and 𝑐
~

 have 

their values in the following three distinct total orders (it is not useful to consider six): 

(31.27) 1) 0 ≤ 𝑎
    ~

 ≤  𝑏
~

 ≤ 𝑐
~

 ≤ 1. 2) 0 ≤ 𝑏
     ~

 ≤  𝑐
~
 ≤ 𝑎

~
 ≤ 1 and 3) 0 ≤ 𝑐

      ~
 ≤  𝑎

~
 ≤ 𝑏

~
 ≤ 1. 

We have 

(31.28)  1) 𝑎
~
 ∧ (𝑏

~
 v 𝑐
~
 ) = MIN [𝑎

~
, MAX (𝑏

~
, 𝑐
~
 )] 

= MIN ( 𝑎 
~
, 𝑐
~
 ) =  𝑎

~
. 

(31.29)  (𝑎
~
 ∧  𝑏

~
 ) v (𝑎

~
 ∧  𝑐

~
 ) = MAX [MIN (𝑎

~
, 𝑏
~
 )MIN (𝑎

~
, 𝑐
~
 )] 

= MAX ( 𝑎 
~
, 𝑎
~
 ) =  𝑎

~
. 

(31.30)  2) ) 𝑎
~
 ∧ (𝑏

~
 v 𝑐
~
 ) = MIN [𝑎

~
, MAX (𝑏

~
, 𝑐
~
 )] 

= MIN (𝑎
~
 , 𝑐
~
 ) =  𝑐

~
. 

  (𝑎
~
 ∧  𝑏

~
 ) v (𝑎

~
 ∧  𝑐

~
 ) = MAX [MIN (𝑎

~
, 𝑏
~
 ) ,MIN (𝑎

~
, 𝑐
~
 )] 

= MAX (𝑏
~
, 𝑐
~
 ) = 𝑐

~
. 

 

3) 𝑎
~
 ∧ (𝑏

~
 v 𝑐
~
 ) = MIN [𝑎

~
, MAX (𝑏

~
, 𝑐
~
 )] 

= MIN ( 𝑎 
~
, 𝑏
~
 ) =  𝑎

~
. 

 (𝑎
~
 ∧  𝑏

~
 ) v (𝑎

~
 ∧  𝑐

~
 ) = MAX [MIN (𝑎

~
, 𝑏
~
 )MIN (𝑎

~
, 𝑐
~
 )] 

= MAX ( 𝑎 
~
, 𝑐
~
 ) =  𝑎

~
. 

 

 We shall prove 𝑎
~
 ∧  𝑏

~
 =  𝑎

~
  v 𝑏

~
 . 

Let 0 ≤ 𝑎
    ~

<  𝑏
~

 ≤ 𝑐
~

 ≤ 1 

MAX [(1 − 𝑎
~
 ) , (1 − 𝑏

~
 )] =  1 − 𝑎

~
 

= MIN ( 𝑎 
~
, 𝑏
~
 ) =  𝑎

~
. 

MAX [(1 − 𝑎
~
 ) , (1 − 𝑏

~
 )] +  MIN [( 𝑎

~
 , 𝑏
~
)] =  1 − 𝑎

~
 + 𝑎

~
= 1 then 
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MAX [(1 − 𝑎
~
 ) , (1 − 𝑏

~
 )] =  1 - MIN [ 𝑎 

~
, 𝑏
~
] . 

   𝑎
~
  v 𝑏

~
  = 𝑎

~
 ∧  𝑏

~
 . 

 Very important remark.  Properties (32.12) – 32.26) are all the properties of a 

Boolean binary algebra with the following two exceptions. 

    𝑎 . 𝑎  = 0 and 𝑎 ∔  𝑎  = 1 

for which the corresponding expressions are not satisfied: 

  𝑎
~
 ∧ 𝑎

~
  ≠ 0,      except for 𝑎

~
 = 0 or 𝑎

~
 = 1. 

  𝑎
~
 v 𝑎
~
  ≠ 1,   except for 𝑎

~
 = 0 or 𝑎

~
 = 1. 

 Because of this, the structure obtained over the variables 𝑎
~

 , 𝑏
~

 …. for the operations 

∧, v and – may not be considered as constituting an algebra in the sense given to this word 

in modern mathematics.  Let it be understood also that the world algebra, as many other 

words in the language of mathematics, is not employed by all in the same sense. 

Fuzzy variables.  Functions of fuzzy variables.  The variables 𝜚, ℛ, … ∈ [0,1]  will be 

called fuzzy variables + in the present theory.  The functions constructed with the aid of 

these variables will be called functions of fuzzy variables under the following condition. 

 Let 𝑓
~

 (𝑎
~
, 𝑏
~
, ….  ) be a function 𝜚,ℛ, …. In order that this function may be called a 

function of fuzzy it is necessary and sufficient that 𝑓
~

 depend only on fuzzy variables and 

that 

Theorem I.  If (𝜚, ℛ, … ) contains only fuzzy variables and the operators v,  ∧, and, − , 

then 0 < 𝑓
~

< 1is always satisfied. 

Proof.  This is evident.  Each of the operation  ∧,   v, −  on the variables 𝜚, ℛ, … ∈ 

[0,1] cannot produce a result outside the limits 0 and 1.  Submitting such a result to the 

operations ∧,   v, −  with other results of the same nature cannot produce a result outside 

these limits. 

 Simplification of functions of fuzzy variables.  Functions of fuzzy variables may 

not be, as are Boolean binary functions, the objects of truth tables permitting an ordered 

analysis (In the order of binary numbers) of these functions.  Nor may they be simplified 

easily, as are Boolean functions, because of the absence of the two properties (32.39) and 

(42.40).  Also because of this, one may not decompose these functions in a disjunctive 
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canonical form (with the aid of the minterms) or in a conjunctive canonical form (with the 

aid of maxterms. 

 We shall see several examples of simplifications:  

   𝑓
~

 (𝑎
~
,  𝑏
~
, ) =  𝑎

~
 v (𝑎

~
 ∧  𝑏

~
 ) 

= 𝑎
~
 ∧ (1 v 𝑏

~
 ) . after (31.18) and (31.22) since  

𝑎
~
 ∧ (1 v 𝑏

~
 ) = (𝑎

~
 ∧  1 ) v (𝑎

~
 ∧  𝑏

~
 ) 

= 𝑎
~
 v (𝑎

~
 ∧  𝑏

~
 ) 

= 𝑎
~
 ∧  1.    after (31.23) 

=  𝑎
~

 .    after (31.22).  

Also 

  𝑎
~
 v (𝑎

~
 ∧  𝑏

~
 ) = 𝑎

~
.  This is called the property of absorption. 

In a similar fashion one may show that 

 𝑎
~
 ∧ (𝑎

~
 v 𝑏
~
 ) = 𝑎

~
 .  This is the dual form of the property of absorption.   

We consider another example: 

 𝑓
~

 (𝑎
~
, 𝑏
~
,  𝑐
~
 ) =  (𝑎

~
 ∧  𝑏

~
  ∧    𝑐

~
  ) v   ( 𝑎

~
  ∧ ( 𝑏

~
 v  𝑐

~
) v  𝑎

~
  v ( ( 𝑏

~
 ∧   𝑐

~
) 

= (𝑎
~
 ∧  𝑏

~
 ∧  𝑐

~
  )

⏟        
 v (𝑎

~
  ∧  𝑏

~
   )

⏟      
 v (𝑎

~
 ∧  𝑐

~
  )

⏟      
  v  𝑎

~
  v
⏟

  ( ( 𝑏
~
 ∧   𝑐

~
 )

⏟      
 

(1)   (2)      (3)          (4)  (5) 

= ( 𝑏 ∧  𝑐) v 𝑎 

It is unnecessary to recall the important role of parentheses. 

 

FUZZY LOGIC 

We know that the number of distinct boolean functions obtained with the aid of 

distinet variables is equal to  2(2
𝑛).  In the case of n fuzzy variables, the number of fuzzy 

functions constructed in an arbitrary fashion with these n variables and the operations ∧ ,  v 

, and – is likewise finite; we shall prove this later. 

Remark: Any v operation may be replaced by a ∧ operation and vice versa.  In fact  

𝑎
~
 ∧  𝑏

~
 = MIN (𝑎

~
 , 𝑏
~
  ) 

= 1 – MAX  (𝑎
~
  , 𝑏
~
 )                         
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= 𝑎
~
  v 𝑏

~
  . 

This is another way of presenting (31.25).  one may do the same for (31.26). 

 Thus it is sufficient to use either the operators ∧ and – or the operators v and – in 

order to represent any function of fuzzy variables involving the symbols ∧ , v , and -, but 

the notation is then very cumbersome. 

Recall that in a Boolean algebra a single operator suffices to represent an arbitrary 

Boolean function. 

Consider the Shaffer operator 

a | b = 𝑎 .  𝑏 

= 𝑎   ∔  𝑏 . 

because 

  𝑎 ∔ 𝑏 = 𝑎  |  𝑏 = (𝑎 | 𝑎) | (𝑏 | 𝑏) 

  𝑎 .  𝑏 = 𝑎 |  𝑏 = (𝑎 | 𝑏) | (𝑎 | 𝑏) 

 𝑎 = 𝑎 | 𝑎 . 

Consider the Peirce operator 

  𝑎 | 𝑏 = 𝑎 ∔   𝑏 

= 𝑎  .  𝑏 . 

because 

  𝑎 ∔ 𝑏 = 𝑎 |  𝑏 = (𝑎 | 𝑏) | (𝑎 | 𝑏) . 

  𝑎 . 𝑏 = 𝑎 |  𝑏 = (𝑎 | 𝑎) | (𝑎 | 𝑏) . 

𝑎 = 𝑎 | 𝑎 . 

One may pass from a Boolean expression using the Peirce operator to an 

expression involving the Sheffer operator and vice versa: 

 𝑎 | 𝑏  =  𝑎  .  𝑏 = 𝑎 |  𝑏  =  (𝑎 | 𝑎) | (𝑎 | 𝑏)  

= ((𝑎 | 𝑎) | (𝑏 | 𝑏)) |  ((𝑎 | 𝑎) | (𝑏 | 𝑏)) . 

 

CHARACTERISTIC FUNCTION OF A FUZZY SUBSET 

 𝑎 | 𝑏  =  𝑎  ∔  𝑏 = 𝑎 |  𝑏  = (𝑎 | 𝑏) | (𝑎 | 𝑏)  

((𝑎 | 𝑏) | (𝑎 | 𝑏))((𝑎 | 𝑏) | (𝑎 | 𝑏) 
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The difficulties in writing appear rapidly, so that one practically sets aside the use 

of such operators: but one may construct electronic circuits with a single technology and 

this may be useful in certain cases. 

For the case of fuzzy variables, we define the operators 

𝑎
~
 | 𝑏
~

 = 𝑎
~
 ∧  𝑏

~
 

=   𝑎
~

  ∧ 𝑏
~

 

𝑎
~
 | 𝑏
~

 = 𝑎
~
 v 𝑏
~

 

=   𝑎
~
 ∧   𝑏

~
 

 Any function of fuzzy variables may be written with the aid of only one of 

these operators.  For 

(1)  𝑎
~
 v 𝑏
~

 = 𝑎
~

  | 𝑏
~

 = ((𝑎
~
 | 𝑎
~
) | (𝑏 | 𝑏)) . 

𝑎
~
 ∧  𝑏

~
 = 𝑎

~
 | 𝑏
~

 = ((𝑎
~
 | 𝑏
~
) | (𝑎 | 𝑏)) . 

𝑎
~

 = 𝑎
~
 | 𝑏
~

 . 

 

(2) 𝑎
~
 v 𝑏
~

 = 𝑎
~

  | 𝑏
~

 = ((𝑎
~
 | 𝑎
~
) | (𝑎 | 𝑏)) . 

𝑎
~
 ∧  𝑏

~
 = 𝑎

~
  | 𝑏

~
 = ((𝑎

~
 | 𝑎
~
) | (𝑏 | 𝑏)) . 

𝑎
~

 = 𝑎
~
 | 𝑎
~

 . 

And one may pass from peirce to Sheffer and vice versa using formulas (32.57) and 

32.58) above. 

As an example we see how to write a function of fuzzy variables that is not too 

complicated using the Sheffer operator: 

𝑓
~

 (𝑎
~
 , 𝑏
~
  , 𝑐

~
 ) = 𝑎

~
 ∧ 𝑏

~
 v  𝑐

~
  

=(𝑎
~
 | 𝑎
~
)  ∧     ((𝑏

~
 | 𝑏
~
) 𝑐
~
  | 𝑐
~
 ) ) 

= (𝑎
~
 | 𝑎
~
)  ∧    (((𝑏

~
 | 𝑏
~
) | (𝑐

~
 | 𝑐
~
 )| (𝑐

~
 | 𝑐
~
 ))) 

= (𝑎
~
 | 𝑎
~
) |    (((𝑏

~
 | 𝑏
~
) | (𝑐

~
 | 𝑐
~
 )| (𝑐

~
 | 𝑐
~
 ))) ((𝑎

~
 | 𝑎
~
) |    ((𝑏

~
 | 𝑏
~
) | (𝑐

~
 | 𝑐
~
 )| (𝑐

~
 | 𝑐
~
 ))) 

 

This is a horribly complicated expression to express a function so simple as  
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 𝑎
~

 ∧ (𝑏
~
  v  𝑐

~
 ). 

Table of values of a function of fuzzy variables.  In order to study Boolean binary 

functions one may use what is called a truth table, where one assigns to the binary 

variables all possible values and obtains thanks to this the values of the function.  Such a 

truth table would not make sense for functions of fuzzy variables, but one may construct 

tables of a different nature that play a similar role. 

 In order to study a function of one fuzzy variable 𝑎
~

 we shall examine its 

value in the following two cases: 

𝑎
~
 ≤ 𝑎

~
 . 

𝑎
~

 ≤ 𝑎
~

 . 

In order to study a function of two variables 𝑎
~

 and 𝑏
~

 we shall examine its value in 

the following eight cases. 

 𝑎
~

 ≤ 𝑏
~

 ≤ 𝑏
~
 ≤ 𝑎

~
 . 

 𝑎
~

 ≤ 𝑏
~

 ≤ 𝑏
~
  ≤ 𝑎

~
 . 

 𝑎
~

 ≤ 𝑏
~

 ≤ 𝑏
~
  ≤ 𝑎

~
 . 

 𝑎
~

 ≤ 𝑏
~

 ≤ 𝑏
~
  ≤ 𝑎

~
 . 

 𝑏
~

 ≤ 𝑎
~

 ≤ 𝑎
~
 ≤ 𝑏

~
 . 

 𝑏
~

 ≤ 𝑎
~
 ≤ 𝑎

~
 ≤ 𝑏

~
 . 

 𝑏
~

 ≤ 𝑎
~

 ≤ 𝑎
~
 ≤ 𝑏

~
 . 

 𝑏
~

 ≤ 𝑎
~

 ≤ 𝑎
~
 ≤ 𝑏

~
 . 

In order to study a function of the three variables  𝑎
~

 , 𝑏
~
 and 𝑐

~
 one considers the 48 

cases below, presented without the < sign and without the symbol ~ in order to save 

space: 

𝑎  𝑏  𝑐  𝑐   𝑏   𝑎 . 

𝑎  𝑏 𝑐  𝑐   𝑏   𝑎 . 

𝑎  𝑏  𝑐   𝑐  𝑏   𝑎 . 

𝑎  𝑏  𝑐   𝑐  𝑏   𝑎 . 

 𝑎  𝑏  𝑐  𝑐   𝑏  𝑎 . 

𝑎  𝑏    𝑐  𝑐   𝑏  𝑎 . 

 

𝑎  𝑐  𝑏  𝑏   𝑐   𝑎 . 

𝑎  𝑐 𝑏  𝑏   𝑐   𝑎 . 

𝑎  𝑐  𝑏   𝑏  𝑐   𝑎 . 

𝑎  𝑐  𝑏   𝑏  𝑐   𝑎 . 

𝑎  𝑐  𝑏  𝑏   𝑐  𝑎 . 

𝑎  𝑐  𝑏  𝑐   𝑎  𝑎 . 

 

𝑏  𝑎  𝑐  𝑐   𝑎   𝑏 . 

𝑏  𝑎   𝑐  𝑐   𝑎   𝑏. 

𝑏  𝑎  𝑐   𝑐  𝑎   𝑏 . 
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𝑏  𝑎  𝑐   𝑐  𝑎   𝑏 . 𝑏  𝑎  𝑐  𝑐   𝑎  𝑏 . 𝑏  𝑎    𝑐  𝑐   𝑎  𝑏 . 

 

1 suggest calling these enumeration procedures entipatindromes since one forms 

palindrome sequences and superimposes complementation on these in an antisymmetric 

fashion.  (A palindrome is a world of phrase that is identical to itself when one reads it 

from the end to the beginning: “Able was | ere | saw Elba.”) 
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𝑎  𝑏  𝑐  𝑐  𝑏  𝑎  

𝑎  𝑏  𝑐  𝑐  𝑏   𝑎  

𝑏  𝑐  𝑎  𝑎  𝑐 𝑏. 

𝑏 𝑐  𝑎  𝑎  𝑐   𝑏 . 

𝑏  𝑐  𝑎  𝑎  𝑐  𝑏 . 

𝑏  𝑐  𝑎  a   𝑐 𝑏 . 

𝑏  𝑐  𝑎  𝑎  𝑐  𝑏 . 

𝑏  𝑐  𝑎  𝑎  𝑐  𝑏 . 

𝑏  𝑐  𝑎  𝑎  𝑐  𝑏. 

𝑏  𝑐  𝑎  𝑎  𝑐  𝑏  

𝑎  𝑐  𝑏  𝑏  𝑐   𝑎 . 

𝑎  𝑐  𝑏  𝑏   𝑐  𝑎. 

𝑐 𝑎  𝑏  𝑏   𝑎   𝑐 .     𝑐 𝑎  𝑏  𝑏   𝑎   𝑐.𝑐  𝑎  𝑏   𝑏  𝑎   𝑐 . 

𝑐  𝑎  𝑏   𝑏  𝑎   𝑐 . 

𝑐  𝑎  𝑏   𝑏  𝑎   𝑐 . 

𝑐  𝑎  𝑏  𝑏   𝑎  𝑐. 

𝑐  𝑎  𝑏  𝑏   𝑎  𝑐. 

𝑐  𝑎  𝑏   𝑏  𝑎  𝑐.    

𝑏   𝑎  𝑐  𝑐  𝑎  𝑏 

𝑏   𝑎  𝑐  𝑐 𝑎   𝑏 

𝑐  𝑏  𝑎  𝑎  𝑏  𝑐. 

𝑐  𝑏  𝑎  𝑎 𝑏  𝑐.  

c 𝑏  𝑎  𝑎  𝑏  𝑐    

c   𝑏  𝑎  𝑎 𝑏 𝑐 

𝑐  𝑏  𝑎  𝑎 𝑏  𝑐 

𝑐  𝑏  𝑎 𝑎 𝑏  𝑐.  

𝑐   𝑏 𝑎 𝑎  𝑏 𝑐.  

c  𝑏  𝑎  𝑎 𝑏 𝑐 

In order to study a function of n variables, one considers 

  𝑝𝑛  2𝑛 where 𝑝𝑛 = n = n(n − 1) 
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By examining (32.68) – (32.70) one may establish the effect of antisymmetry owing 

to  

if   𝑣
~

 ≤ 𝑣
~

    then    𝑣
~
   ≤   𝑣

~
  

 

 To enumerate all possible cases without omission or repetition.  one uses a 

lexicographic procedure.  Establish, for example, the correspondence 

1  𝑎. 

2  𝑎. 

3  𝑏. 

4  𝑏. 

then one has the correspondences 

1 3  𝑎  𝑏  from which   𝑎  𝑏  𝑏  𝑎  

1 4  𝑎  𝑏  from which   𝑎    𝑏  𝑏 𝑎  

2 3  𝑎  𝑏  from which   𝑎  𝑏  𝑏  𝑎  

1 3  𝑎  𝑏  from which   𝑎   𝑏  𝑏  𝑎  

1 3  𝑎  𝑏  from which   𝑏  𝑎  𝑎   𝑏 

1 3  𝑎  𝑏  from which   𝑏  𝑎  𝑎   𝑏  

1 3  𝑎  𝑏  from which    𝑏  𝑎  𝑎  𝑏  

1 3  𝑎  𝑏  from which    𝑏  𝑎  𝑎  𝑏  

other procedures may easily be imagined. 

 We consider an example, Enumerate the values of the function 

𝑓
~
  ( 𝑎

~
 , 𝑏
~
 ) =  (𝑎

~
 ∧  𝑎

~
 )   v (𝑎

~
 ∧  𝑏

~
  ∧  𝑏

~
) 

 

the result is supplied in the table in Figure 31.1 

 

≤    ≤     ≤ 𝑎
~
 ∧  𝑎

~
 𝑎

~
 ∧  𝑏

~
  ∧  𝑏

~
 (𝑎

~
 ∧  𝑎

~
 )   v (𝑎

~
 ∧  𝑏

~
  ∧  𝑏

~
) 

𝑎
~

 𝑏
~

 𝑏
~

 𝑎
~

 𝑎
~

 𝑏
~

 𝑏
~

 

𝑎
~

 𝑏
~

 𝑏
~

 𝑎
~

 𝑎
~

 𝑏
~

 𝑏
~
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𝑏
~

 𝑏
~

 𝑏
~

 𝑎
~

 𝑎
~

 𝑎
~

 𝑎
~

 

𝑎
~

 𝑏
~

 𝑏
~

 𝑎
~

 𝑎
~

 𝑎
~

 𝑎
~

 

𝑏
~

 𝑎
~

 𝑎
~

 𝑏
~

 𝑎
~

 𝑏
~

 𝑎
~

 

𝑏
~

 𝑎
~

 𝑎
~

 𝑏
~

 𝑎
~

 𝑏
~

 𝑎
~

 

𝑏
~

 𝑎
~

 𝑎
~

 𝑏
~

 𝑎
~

 𝑏
~

 𝑎
~

 

𝑏
~

 𝑎
~

 𝑎
~

 𝑏
~

 𝑎
~

 𝑏
~

 𝑎
~

 

 

 Equality of two functions of fuzzy variables.  We shall say that two functions of 

fuzzy variables 𝑓
~
  1 and  𝑓

~
  2 are equal (one also says identical) if they produce the same table 

of values through enumeration of all possible cases. 

 Mixed operations.  The variables 𝑎
~

, 𝑏
~

 ….. ∈ = [0,1]. may be submitted to0 

operations other than  ∧ ,  v  and __ in order to form what will be called mixed functions of 

fuzzy variables. 

 A among such operations we shall include 

 Product  𝑎
~
  .   𝑏

~
   where one can easily verify 

𝑎
~

 ∈ = [0,1], 𝑏
~

 ∈ = [0,1] - 𝑎
~
 . 𝑏
~

 ∈ = [0,1]. 

Sum  𝑎
~
 +̂ 𝑏

~
 = 𝑎

~
+ 𝑏
~

 - 𝑎
~
 . 𝑏
~

 . 

where the above property still holds. 

Thus, the function 

𝑓
~
 ( 𝑎
~
 , 𝑏
~

  , 𝑐
~

) = ( 𝑎
~
 +̂ 𝑏

~
 ) ∧  ( 𝑏

~
 +̂ 𝑐

~
 ) ∧ 𝑎

~
 ∧  𝑐

~
 . 

is a mixed function. 

 Important remark.  With the aid of a table of enumeration one may define for n 

variables. 
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N = (2n)(𝑛.2𝑛) 

distinet functions + : thus 

  𝑛 = 1    N = (2.1)2 = 22 = 4 . 

  𝑛 = 2    N = (2.2)2.2
2
 = 42 = 65.536. 

  𝑛 = 3    N = (2.2)6.2
3
 = 645 . 

  𝑛 = 4    N = (2.4)24.2
4
 = 8384  ………… etc. 

 among all these functions, a considerably smaller number are formed by the functions 

of fuzzy variables expressible with the aid of the operations  ∧  and  v on the variables 𝑎
~
 , 𝑏
~

 

……. and 𝑎
~
 , 𝑏
~

 ……. 

 Convention ‘Unless otherwise noted, we shall call an analytic function of fuzzy 

variables, designated by  𝑓
~

 .  any function of the variables 𝑎
~
 . 𝑏
~

 ……. that may be expressed 

using only the operations ∧  and  v :  the variables may occur either in their direct form or as 

their 1’s complement, that is 𝑎
~
 . 𝑏
~

 …… 

 In order to simplify language, already rather cumbersome, analytic functions of fuzzy 

variables will be called functions of fuzzy variables when this will not introduce error or 

confusion. 

 

32. POLYNOMIAL FORMS 

 Given the double distributivity expressed by (32.18) and (32.19), any function 𝑓
~

 

(𝑎
~
 . 𝑏
~
 …..) may be expressed in a polynomial form with respect to ∧ or with respect to v.   

 To begin, we consider an example.  Let 

      𝑓
~

 (𝑎
~
 , 𝑏
~
 , 𝑐
~
)  =   (𝑎

~
  ∧ 𝑏

~
) v (𝑎

~
  ∧ 𝑏

~
 ∧ 𝑐

~
 )  

This function is presented in a polynomial form with respect to v (two monomials in ∧ 

connected by  v ).  We may transform this into a polynomial form with respect to ∧ by using 

(31.19) ; it becomes 

= 𝑓
~

 (𝑎
~
 , 𝑏
~
 , 𝑐
~
)  =   (𝑎

~
 v  𝑎

~
)  ∧  (𝑎

~
 v  𝑎

~
 ∧ 𝑏

~
 )  ∧ (𝑎

~
 v  𝑐

~
) ∧ ( 𝑏

~
 v  𝑎

~
) ∧ (𝑏

~
 v  𝑏

~
) ∧ (𝑏

~
 v  𝑐

~
) 

we see another example. Let 

This is easy to prove.  For a variables a, b, ….. l.  one must have n1 permulations.  But, in 

each permutation one must have a or 𝑎 , b or 𝑏  ….. 1 or 1  thus 2𝑛 times more permutations; 
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this give n1. 22 as the number of rows in a table such as that in Figure 31.1.  Each row may 

take a value among these 2𝑛 variables and their respective complements; thus one may define 

(2n)(𝑛!.2
𝑛) distinct functions with such tables. 

 𝑓
~

 (𝑎
~
 , 𝑏
~
 , 𝑐
~
)  =   (𝑎

~
 v  𝑏

~
)  ∧  𝑐

~
  ∧ (𝑎

~
 v  𝑏

~
 v  𝑐

~
 ) = (𝑎

~
 v  𝑏

~
) ∧   𝑐

~
 

𝑏𝑦 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑡ℎ𝑖𝑟𝑑 𝑡𝑒𝑟𝑚 𝑏𝑦 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑.  𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑖𝑛𝑔 𝑡ℎ𝑖𝑠 𝑢𝑠𝑖𝑛𝑔 (31.18).   

𝑤𝑒 ℎ𝑎𝑣𝑒  

𝑓
~

 (𝑎
~
 , 𝑏
~
 , 𝑐
~
)  = (𝑎

~
 ∧ 𝑐

~
 ) v  ( 𝑏

~
  ∧   𝑐

~
 ) 

which gives a polynomial form with respect to ∨ ;  whereas (𝑎
~

 v  𝑏
~
)  ∧  𝑐

~
 is the corresponding 

polynomial form with respect to ∧. 

 In the case of Boolean functions, in order to show that two functions 𝑓
~

 and 𝑓
~

. 

are identical, it suffices to check that they lead to the same truth table or that their disjunctive 

or conjunctive canonical forms are respectively the same.  Concerning functions of fuzzy 

variables, one may define a similar but less strong notion. 

 Maximal monomial.  Let 𝑓
~

 (𝑎
~
 , 𝑏
~
  … ) be expressed in a polynomial form with 

respect to ∧.  A monomial of this polynomial form will be said to be maximal (one also says 

principal monomial) if it is absorbed by no other monomial  of this polynomial form (a 

corresponding definition is made for a monomial in a polynomial form with respect to ∨).   

 Reduced polynomial form.  Any polynomial form with respect to ∨ that does not 

contain a maximal monomial in ∧ will be said to be a reduced polynomial form with respect 

to ∨.  A symmetric definition, by permuting ∨ and ∧, will define a reduced polynomial form 

with respect to ∧. 

 An analytic function  𝑓
~

 (𝑎
~
 , 𝑏
~
  … ) may correspond to several reduced polynomial 

forms.  We shall see an example.  The two reduced polynomial forms 

𝑓
~

 (𝑎
~
 , 𝑏
~
 ) =  (𝑎

~
 ∧  𝑎

~
 ) ∨ (𝑎

~
 ∧  𝑏

~
 ) ∨ (𝑎

~
 ∧  𝑎

~
 ) 

𝑓
~

 (𝑎
~
 , 𝑏
~
 ) =  (𝑎

~
 ∧  𝑏

~
 ) ∨ (𝑎

~
 ∧  𝑎

~
 ) 

 

correspond to the same analystic function, as one may verify by antipalindrome enumeration, 

as has been done,  for example, in Figure 32.1. 
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 For any analystic function, there exists at least one reduced polynomial form with 

respect to ∨ and at least one reduced polynomial form with respect to ∧.  One may pass from 

one to the other by developing with respect to ∧ (respectively, with respect to ∨) and 

effecting the absorption of nonmaximal monomials.  In Appendix C of Volume II we shall 

treat these notions in more detail. 

Example: The function. 

𝑓
~

 (𝑎
~
 , 𝑏
~
 , 𝑐
~
 ) =  (𝑎

~
  ∧  𝑏

~
 ∧  𝑐

~
) ∨  (𝑏

~
  ∧  𝑐

~
 ) 

is presented in a reduced polynomial form with respect to ∨. 

 

Its reduced polynomial form with respect to ∧ is  

𝑓
~

 (𝑎
~
 , 𝑏
~
 , 𝑐
~
 ) = (𝑎

~
 ∨  𝑏

~
 ) ∧ (𝑎

~
 ∨  𝑐

~
 ) ∧ (𝑏

~
 ∨  𝑏

~
  ) ∧ (𝑏

~
∨ 𝑐

~
 ) ∧ (𝑐

~
 ∨  𝑐

~
 ) ∧ (𝑏

~
 ∨ 𝑐

~
 ). 

 Identity of two functions of fuzzy variables.  A sufficient condition for two functions 

of fuzzy variables to be identical is that one can bring them to the same reduced polynomial 

form in ∧ (respectively, in ∨).  A necessary and sufficient condition is that one obtains the 

same table of values for the functions. 

Theorem.  The number of distinct reduced polynomial forms in n variables is finite 

and is a superior bound for the number of distinct analytic functions of n fuzzy variables. 

As may be seen in the enumeration that follows, these reduced polynomials forms are 

enumerated as the elements of a distributive free lattice with 2n generators and are 

enumerated in the same fashion.  Thus, for n = 1.  there are 4 distinct forms.  for n = 2, there 

are 166; for n = 3, there are 7,828,532…; but this number of distinct forms always remains 

finite because the number of elements of a distributive free lattice with 2n generators is 

always finite in n is finite. 

The enumeration of all reduced forms of n fuzzy variables does not seem to be an 

easy problem. 

 For on: variable. it is trivial.  One has 

𝑎
~

    .     𝑎
~

          .      𝑎
~

 ∧ 𝑎
~

         .        𝑎
~

 ∧ 𝑎
~
        . 

that is, four reduced forms.  Note well that 𝑎
~
  ∧   𝑏

~
, for example, is to be distinguished from 𝑎

~
 

since 

𝑎
~

 ∧ 𝑎
~

 = 𝑎
~

  if  𝑎
~

 ≤ 𝑎
~

  and  𝑎
~

 ∧ 𝑎
~

 = 𝑎
~

  if  𝑎
~
≤ 𝑎

~
. 

For two variables, it is already no longer simple, and is in fact very complicated. 
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 We use, for example, reduced polynomial forms in ∨ (monomials in ∧).  We know 

that to each form in ∨ there corresponds a form in ∧ and vice versa (because of the two 

theorems of De Morgan). 

We then see the enumeration + of all possible distinct reduced polynomials forms in ∨   

𝑓
~

 (𝑎
~
 , 𝑏
~
 ) : 

(1) 𝑓
~

 (𝑎
~
 , 𝑏
~
 ) containing one monomial: 

 

 

(2) 𝑓
~

 (𝑎
~
 , 𝑏
~
 ) containing two monomials then : 
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33. ANALYSIS OF A FUNCTION OF FUZZY VARIABLES.  METHOD OF 

MARINOS 

 

We decompose M = [0,1] in to m joined intervals, closed on the left and open on the right, 

except the last: 

 11 = [  𝛼0 = 0, 𝛼1 ]    .  12 =𝛼1, 𝛼21… . . 1𝑚  = [𝛼𝑚−1, 𝛼𝑚 = 1]. 

where  

M = ([  𝛼0 = 0, 𝛼1 ] ) ∪ ([𝛼1 , 𝛼2 ]) ∪ ……  ∪ ([𝛼𝑚−1, 𝛼𝑚 = 1 ]). 

we then seek conditions so that a function of n fuzzy variables 

𝑓
~

 (𝑎1
~
 , 𝑎2
~
………𝑎𝑛

~
)   .  𝑎1

~
∈ [0,1]    .    l = 1, 2, ……n  . 
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will belong to an interval 𝑙𝑘. 

Example - 1. We begin with an example. 

Let 𝑓
~

 (𝑎
~
 , 𝑏
~
 , 𝑐
~
)  =(𝑎

~
  ∧  𝑏

~
   ) v (𝑎

~
 ∧  𝑏

~
 ∧  𝑐

~
  ) . 

What conditions will give one 

𝑓
~

 (𝑎
~
 . 𝑏
~
 . 𝑐
~
) ∈ 1𝐴 . 

that is,  

𝛼𝐴−1 ≤ 𝑓
~

 (𝑎
~
 . 𝑏
~
 . 𝑐
~
) < 𝛼𝐴  . 

 We examine (43.4).  The member on the right is formed of two terms; thus it is 

necessary to take the largest.  We begin with a first hypothesis. 

Hypothesis 1: 𝑎
~
  ∧  𝑏

~
  ≥ 𝑎

~
 ∧ 𝑏

~
 ∧  𝑐

~
  

This implies 𝛼𝐴−1 ≤ 𝑎
~
  ∧  𝑏

~
  < 𝛼𝐴 . 

that is, explicitly 

𝛼𝐴−1 ≤ MIN (𝑎
~
  , 𝑏
~
  ) < 𝛼𝐴 . 

or again 

𝛼𝐴−1 ≤ MIN (1 − 𝑎 
~
. 1 −  𝑏

~
 ) < 𝛼𝐴  . 

Since one may not place  𝑎 
~

 and  𝑏
~

  arbitrarily with respect to one another, it is necessary that 

 1- 𝑎 
~

 ≥ 𝛼𝐴−1 and 1 -  𝑏 
~

 ≥ 𝛼𝐴−1 . 

and  

 1- 𝑎 
~

 ≤ 𝛼𝐴−1 or / and 1 -  𝑏 
~

 < 𝛼𝐴  . 

This may be rewritten: 

𝑎 
~

 ≤ 1 −  𝛼𝐴−1 and   𝑏 
~

 ≤ 1 −  𝛼𝐴−1 

and  

𝑎 
~

 > 1 −  𝛼𝑘   or / and 1 -  𝑏 
~

 > 1 − 𝛼𝑘  

Hypothesis – II: 

𝑎
~
  ∧  𝑏

~
  < 𝑎

~
 ∧ 𝑏

~
 ∧  𝑐

~
  

This implies 

𝛼𝑘−1 ≤ 𝑎
~

 ∧ 𝑏
~

 ∧  𝑐
~
< 𝛼𝑘 . 

explicitly that is, 
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𝛼𝑘−1 ≤ MIN (𝑎
~
 , 𝑏
~
 , 𝑐
~
 ) < 𝛼𝑘 . 

or again 

𝛼𝑘−1 ≤ MIN (𝑎
~
 , 𝑏
~
 ,   1 − 𝑐

~
 ) < 𝛼𝑘 . 

Since we may not place  𝑎 
~

 , 𝑏
~

  and 𝑐
~
  arbitrarily with respect to one another, first it is 

necessary that 

𝑎 
~

 ≥ 𝛼𝑘−1 and 1 -  𝑏 
~

 ≥ 𝛼𝑘−1 and  1 − 𝑐
~

  ≥ 𝛼𝑘−1 

and  

𝑎 
~

 ≤ 𝛼𝑘  or / and 1 -  𝑏 
~

 < 𝛼𝑘  or / and 1 -  𝑐 
~

 < 𝛼𝑘 . 

This may be rewritten: 

𝑎 
~

 ≥  𝛼𝑘−1 and   𝑏 
~

 ≥ 𝛼𝑘−1 and  𝑐
~

  ≤ 1 − 𝛼𝑘−1 

and  

  𝑎 
~

 < 𝛼𝑘   or / and   𝑏 
~

 <  𝛼𝑘    Or / and 𝑐
~

  > 1 − 𝛼𝑘  

Finally, these results may be regrouped in the following fashion: 

Property: I, 

[(𝑎
~
 ≤ 1 − 𝛼𝑘−1) and (𝑏

~
 ≤  1 − 𝛼𝑘−1)] or / and[(𝑎

~
 ≥  𝛼𝑘−1) and (𝑏

~
≥ 𝛼𝑘−1) and (𝑐

~
 ≤

 1 − 𝛼𝑘−1)] 

Property: II, 

[(𝑎
~
 > 1 − 𝛼𝑘) or / and (𝑏

~
 >  1 − 𝛼𝑘)] and  [(𝑎

~
 <  𝛼𝑘)or / and (𝑏

~
< 𝛼𝑘) or /

 and (𝑐
~
 >  1 − 𝛼𝑘)]  

  As a sample of the calculation of  𝑓
~

 (𝑎
~
 . 𝑏
~
 . 𝑐
~
) for particular numerical values, 

we suppose that 

𝑎
~

 = 0.55          ·          𝑏
~

 = 0.57       .   𝑐
~

 = 0.80 . 

Then one has 

𝑓
~

 (𝑎
~
 . 𝑏
~
 . 𝑐
~
) = 𝑓

~
 (0.55 ; 0.57 ; 0.80) 

= (𝑎
~
  ∧  𝑏

~
   )  v (𝑎

~
 ∧    𝑏

~
 ∧   𝑐

~
 ) where 𝑎

~
 = 0.55 ; 𝑏

~
=  0.57 ; 𝑐

~
=  0.80 

= (0.45 ∧ 0.43) v (0.55 ∧  0.57 ∧  0.20) 

= 0.43 v 0.20 

= 0.43 . 
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We now consider a complete numerical example. 

 

Example 2 Let 

𝑓
~

 (𝑎
~
 . 𝑏
~
 . 𝑐
~
) = ( 𝑎

~
 ∧   𝑏

~
 ) v (𝑎

~
  ∧  𝑐

~
  ) v  𝑐

~
  

and suppose that [0,1] is divided into three intervals 

[0, 0, 2] . [0, 2, 0.3] , [0.3, 1] . 

First we consider the interval  [0. 0, 2] . 

Hypothesis I:   𝑎
~
 ∧  𝑏

~
  > 𝑎

~
  ∧ 𝑐

~
  . 𝑎
~

 ∧  𝑏
~
  > 𝑐

~
  . 

one then has    1)  0 ≤  𝑎
~
 ∧  𝑏

~
  < 0, 2 . 

So    0 ≤ MIN (𝑎
~
 , 1 − 𝑏

~
  ) < 0, 2 . 

𝑎
~

 ≥ 0 and 𝑏
~
  ≤  1 

and 𝑎
~

 ≤ 0, 2 or / and 𝑏
~
  >   0.8,  

Hypothesis II: 𝑎
~
 ∧  𝑐

~
 > 𝑎

~
   ∧ 𝑏

~
    . 𝑎

~
  ∧  𝑐

~
 > 𝑐

~
  . 

One then has    0 ≤   𝑎
~
  ∧  𝑐

~
 < 0.2, 

So    0 ≤ MIN (1 − 𝑎
~
 , 𝑐
~
  ) < 0, 2 . 

𝑎
~

 ≤  1 and 𝑐
~
  ≥  0 . 

and   𝑎
~

 ≥ 0, 8 or / and  𝑐
~
    < 0, 2 . 

Hypothesis III :   𝑐
~
  > 𝑎

~
   ∧  𝑏

~
   . 𝑐

~
   > 𝑎

~
  ∧  𝑐

~
. 

One then has    0 ≤   𝑐
~
  < 0, 2 . 

So    0 ≤ 1 − 𝑐
~
 < 0, 0 . 2 . 

0.8 < 𝑐
~

 ≤ 1 . 

Now we consider the interval [0,2, 0.3] . 

Hypothesis I:  𝑎
~
 ∧  𝑏

~
  > 𝑎

~
  ∧ 𝑐

~
  . 𝑎
~

 ∧  𝑏
~
  > 𝑐

~
  . 

has       0.2  ≤  𝑎
~
 ∧  𝑏

~
  < 0, 3 . 

𝑎
~

 ≥ 0.2  and  𝑏
~
  ≤   0, 8 . 

𝑎
~

 < 0.3 or / and 𝑏
~
  >  0.7 . 

Hypothesis II:  𝑎
~
  ∧  𝑐

~
 > 𝑎

~
   ∧ 𝑏

~
 .   𝑎

~
  ∧  𝑐

~
 > 𝑐

~
  . 
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   0.2 ≤  𝑎
~
  ∧  𝑐

~
 <  0.3, 

𝑎
~

 ≤  0.8 and 𝑐
~
  ≥  0, 2. . 

and    𝑎
~

  >  0.7  and  𝑐
~
   < 0, 3 . 

Hypothesis III : 𝑐
~
  > 𝑎

~
   ∧  𝑏

~
   . 𝑐

~
   > 𝑎

~
  ∧  𝑐

~
. 

0.2 ≤  𝑐
~
  < 0, 3 . 

𝑐
~

 ≤ 0, 8 and  𝑐
~

 > 0,7 . 

Last;y, we consider the interval [0, 3, 1] . 

Hypothesis I:   𝑎
~
 ∧  𝑏

~
  > 𝑎

~
  ∧ 𝑐

~
  . 𝑎
~

 ∧  𝑏
~
  > 𝑐

~
   

0.3  ≤  𝑎
~
 ∧  𝑏

~
  ≤ 1 . 

𝑎
~

 ≥ 0.3  and  𝑏
~
  ≤   0, 7 . 

𝑎
~

 ≤ 1 or / and 𝑏
~
  ≥  0 . 

Hypothesis II: 𝑎
~
  ∧  𝑐

~
 > 𝑎

~
   ∧ 𝑏

~
 .   𝑎

~
  ∧  𝑐

~
 > 𝑐

~
  . 

   0.3 ≤  𝑎
~
  ∧  𝑐

~
 <  1, 

𝑎
~

 ≤  0.7 and 𝑐
~
  ≥  0, 3 . 

and   𝑎
~

  ≥  0  or / and  𝑐
~
   ≤ 1. 

Hypothesis III:  𝑐
~
  > 𝑎

~
   ∧ 𝑏

~
 .   𝑐

~
 > 𝑎

~
  ∧ 𝑐

~
 . 

   0.3 ≤  𝑐
~
  ≤ 1 . 

𝑐
~

 ≤  0.7 and 𝑐
~
  ≥  0 . 

Finally, the results of this example may be regrouped in the following fashion: 

 0 ≤ 𝑓
~

 (𝑎
~
 . 𝑏
~
 . 𝑐
~
) <  0 , 2 . 

Property: I (1) 

[(𝑎
~
 ≥ 0 ) and (𝑏

~
 ≤  1)] or / and[(𝑎

~
 ≤  1) and (𝑐

~
≥  0) or / and (𝑐

~
 ≤  1)] . 

Property: I (2) 

[(𝑎
~
 < 0.2) or / and (𝑏

~
> 0.8)] and [(𝑎

~
> 0.8) or / and (𝑐

~
< 0.2)  and (𝑐

~
> 0.8)]  

 

If properties I (1) (34.64) and I (2) (34.66) are verified, then one has (34.64) (34.67) 

= 0 , 2 ≤ 𝑓
~

 (𝑎
~
 . 𝑏
~
 . 𝑐
~
) <  0 , 3 . 
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Property: I (2) 

[(𝑎
~
 ≥ 0, 2 ) and (𝑏

~
 ≤  0, 8)]or / and[(𝑎

~
 ≤  0.8) and (𝑐

~
≥  0.2)or/and (𝑐

~
≤  0.8)] . 

 

[(𝑎
~
 < 0.3) or / and (𝑏

~
> 0.7)] and [(𝑎

~
 > 0.7) or/and (𝑐

~
< 0.3)  and (𝑐

~
 > 0.7)] . 

If properties 𝐼1
(2)

 and 𝐼2
(2)

 are satisfied, then one has 0 , 2 ≤ 𝑓
~

 (𝑎
~
 . 𝑏
~
 . 𝑐
~
) <  0 , 3 . 

 0 , 3 ≤ 𝑓
~

 (𝑎
~
 . 𝑏
~
 . 𝑐
~
)  ≤ 1 . 

Property: 𝐼1
(3)

 

[(𝑎
~
 ≥ 0, 3 ) and (𝑏

~
 ≤ 0, 7)]or / and[(𝑎

~
 ≤ 0.7) and (𝑐

~
≥  0.3)or/and (𝑐

~
≤  0.7)] . 

Property: 𝐼2
(2)

 

[(𝑎
~
 ≤ 1) or / and (𝑏

~
> 0)] and [(𝑎

~
 ≥ 0) or/and (𝑐

~
≤ 1)  and (𝑐

~
 ≥ 0)] . 

If properties  𝐼1
(3)

 and 𝐼2
(3)

are satisfied, then one has (34.70). 

Important Remark.   

We examine 𝐼1 (34.22) and 𝐼1 (34.23).  One may see that properties 𝐼1 and 𝐼2  are dual 

to one another if one mutually replaces. 

 (<) by (≥),      (≤)by (>) ,        (>) by (≤) ,      (≥) by (<) 

        (and) by (and / or).    (and / (or) by (and) 

 ( for the last two, > becomes ≥ and < becomes ≤ . since the last interval is closed both on 

the left and the right). 

 This property is not fortuitous; it is general for all reduced polynomial forms with 

respect to v or with respect to ∧ . 

𝑓
~

 (𝑎
~
 , 𝑏
~
 , 𝑐
~
)  =   (𝑎

~
  v  𝑏

~
)  ∧  (𝑏

~
 v  𝑐

~
 ). 

under what conditions does one have  

𝛼𝑘−1 < 𝑓
~

 (𝑎
~
 , 𝑏
~
 , 𝑐
~
) < 𝛼𝑘  

Hypothesis  1: 𝑎
~
  v  𝑏

~
 <  𝑏

~
 v  𝑐

~
 

This implies  

𝛼𝑘−1 ≤ 𝑎
~
  v  𝑏

~
 <  𝛼𝑘 . 

𝛼𝑘−1 ≤ 𝑀𝐴𝑋 (𝑎
~
    𝑏
~
 ) <  𝛼𝑘  . 

Since we may not arbitrarily place 𝑎
~
 𝑎𝑛𝑑    𝑏

~
 with respect to one another, it is necessary that 
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𝑎
~

 ≥ 𝛼𝑘−1 or / and 𝑏
~

 ≥ 𝛼𝑘−1 . 

and 𝑎
~

 < 𝛼𝑘  and 𝑏
~

 < 𝛼𝑘  . 

Hypothesis II:    𝑏
~

 v  𝑐
~
>  𝑎

~
  v  𝑏

~
 . 

This implies  

𝛼𝑘−1 ≤ 𝑏
~

 v  𝑐
~
 <  𝛼𝑘 . 

or again 

𝛼𝑘−1 ≤ 𝑀𝐴𝑋 (1 − 𝑏
~
  ,  𝑐

~
 ) <  𝛼𝑘 . 

Thus    𝑏
~
  ≤ 1𝛼𝑘−1 or / and 𝑐

~
 ≥ 𝛼𝑘−1 . 

and    𝑏
~

 > 1 − 𝛼𝑘  and 𝑐
~

 < 𝛼𝑘  . 

Regrouping the results obtained, we have: 

Property: 𝐼1
(1)

 

[(𝑎
~
 ≥ 𝛼𝑘−1) or / and (𝑏

~
 ≥ 𝛼𝑘−1)] and[(𝑏

~
 ≤ 1 − 𝛼𝑘−1) or / and(𝑐

~
≥ 𝛼𝑘−1)] . 

Property: 𝐼2
(1)

 

[(𝑎
~
 <  𝛼𝑘) and (𝑏

~
<  𝛼𝑘)] or / and [(𝑏

~
 > 1 − 𝛼𝑘) and (𝑐

~
< 𝛼𝑘) ] . 

 In order that 𝛼𝑘−1 < 𝑓
~

 (𝑎
~
 , 𝑏
~
 , 𝑐
~
) < 𝛼𝑘  

 be satisfied.  It is necessary and sufficient that properties I; and II be satisfied. 

 We not that the property of duality reappears, but or / and has taken the place of and, 

and vice versa.  

 

34. LOGICAL STRUCTURE OF A FUNCTION OF FUZZY VARIABLES 

Recall that the propositional algebra, in which appear the propositions 

“and” denoted by ∆ 

“or / and”denoted by ∇  

“complement” denoted by  − 

follows exactly the same rules as those of Boolean algebras. 

 

  ∆ is associated with  ∩ 

  ∇ is associated with ∪ 

= − is associated with − . 
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In order to present the logical structure of the relations (strict) or nonstrict inequalities) that 

appear in a fuzzy logical function, and considering an interval  

[(𝛼𝑘−1 , 𝛼𝑘 )] we will use the following symbols.  

Let   𝑓
~

 (𝑎
~
 , 𝑏
~
 , …… . 𝑙

~
) may be presented in a reduced polynomial form with respect to v .  In 

order to obtain the logical structure in the interval  (𝛼𝑘−1, 𝛼𝑘) one proceeds as follows: 

TABLE OF PRINCIPAL FUNCTION OF TWO FUZZY VARIABLES AND OF 

THEIR LOGICAL STRUCTURES FOR AN INTERVAL [𝒂𝒌−𝟏, 𝒂𝒌].  

 

38. FUZZY PROPOSITIONS AND THEIR FUNCTIONAL REPRESENTATION 

Fuzzy logic does not rest on truth tables as does formal logic, but upon operations 

realized on fuzzy subsets. 

We begin with a comparative example based on the tale, "Little Red Riding Hood." † 

We comider two formal propositions for which one must verify a posteriori (after reading the 

story) whether they are true or false: 

℘1: the wolf is dressed in the guise of a grandmother  
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℘2: the wolf has eaten the little girl. 

The proposition ℘1Δ℘2 will mean∗": "the wolf is dressed as a grandmother and has 

eaten the little girl. In order that this be true, it is proper that the two statements be true; if 

only one or neither is true, this would not be coherent with the story of Little Red Riding 

Hood. Thus we have the truth table 

†Pardon this rather naive example, which constitutes a very elementary didactic explication. 

Fuzzy logic will be considered as an application in the following volume.  

∗On the subject of the use of the symbols Δ and ∇, we refer to the fondnote on p. 214 at the 

beginning of Section 35. 

 

Fig. 38.1 

But we now present the two logical statements in another fashion. There exists a set of 

animals 

𝐸 = {𝑐𝑎𝑡, 𝑑𝑜𝑔,𝑤𝑜𝑙𝑓, 𝑓𝑜𝑥, 𝑔𝑜𝑎𝑡, 𝑟𝑎𝑡, 𝑟𝑎𝑏𝑏𝑖𝑡}, 

Consider 𝐴 ⊂ 𝐸, the formal subset of animals apt to dress as a grandmother: 

𝐴 =  {(𝑐𝑎𝑡 |0,1), (𝑑𝑜𝑔 | 1), (𝑤𝑜𝑙𝑓 |1), (𝑓𝑜𝑥 |0,5), (𝑔𝑜𝑎𝑡 |1), (𝑟𝑎𝑡 |0), (𝑟𝑎𝑏𝑏𝑖𝑡 |0)} 

that is, 

𝐴 = {𝑤𝑜𝑙𝑓} 

Consider 𝐵 ⊂  𝐸 the formal subset of animals likely to eat the little girl: 
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𝐵 = {(𝑐𝑎𝑡 |0), (𝑑𝑜𝑔 |0), (𝑤𝑜𝑙𝑓 |1), (𝑓𝑜𝑥 |0), (𝑔𝑜𝑎𝑡 |0), (𝑟𝑎𝑡 |0), (𝑟𝑎𝑏𝑏𝑖𝑡 |0)}. 

that is, 

𝐵 ∩ {𝑤𝑜𝑙𝑓}. 

The formal subset of animals prone to dressing as a grandmother and eating little girls is 

𝐴 ∩ 𝐵 = {𝑤𝑜𝑙𝑓}. 

Thus, through such a procedure we have verified that the wolf is indeed the cunning and cruel 

animal described in this celebrated story. 

We consider now two statements from the fuzzy tale of Little Red Riding Hood. 

There exists a set of animals: 

𝐸 =  {𝑐𝑎𝑡, 𝑑𝑜𝑔, 𝑤𝑜𝑙𝑓, 𝑓𝑜𝑥, 𝑔𝑜𝑎𝑡, 𝑟𝑎𝑡, 𝑟𝑎𝑏𝑏𝑖𝑡} 

Consider 𝐴 ⊂ 𝐸, the fuzzy subset of animals apt to dress as a grandmother: 

𝐴 = {(𝑐𝑎𝑡 |0,1), (𝑑𝑜𝑔 | 1), (𝑤𝑜𝑙𝑓 |1), (𝑓𝑜𝑥 |0,5), (𝑔𝑜𝑎𝑡 | 1), (𝑟𝑎𝑡 |0), (𝑟𝑎𝑏𝑏𝑖𝑡 |0)}. 

Consider 𝐵 ⊂ 𝐸, the fuzzy subset of animals likely to eat a little girl: 

𝐵 = {(𝑐𝑎𝑡 |0,1), (𝑑𝑜𝑔 |0,4), (𝑤𝑜𝑙𝑓 | 1), (𝑓𝑜𝑥 |0,7), (𝑔𝑜𝑎𝑡 |0), (𝑟𝑎𝑡 |0), (𝑟𝑎𝑏𝑏𝑖𝑡 | 0)}. 

Then, the fuzzy subset of animals apt to dress as a grandmother and eat a little girl will be 

𝐴 ∩ 𝐵 = {(𝑐𝑎𝑡 |0,1), (𝑑𝑜𝑔 |0,4), (𝑤𝑜𝑙𝑓 | 1), (𝑓𝑜𝑥 |0,5), (𝑔𝑜𝑎𝑡 |0), (𝑟𝑎𝑡 |0), (𝑟𝑎𝑏𝑏𝑖𝑡 |0)}. 

The tale may refer to the wolf, but also to a fox, a dog, or a cat. 

The statements of the fuzzy logic, as the statements of the formal logic, are associated 

explicitly or implicitly to set theory, fuzzy for the former and formal for the latter. 

With the operations, ∩,∪,, and− (intersection, union, and complementation) one 

associates in the formal logic the connectives Δ, ∇ and¬ (conjunction and, disjunction or and, 

negation not). 

Passage to the fuzzy, connectives Δ, ∇ and¬of the corresponding fuzzy logic does not 

present any difficulties since we have already defined the corresponding set operations in 

Section 5. 



203 
 

But it is necessary to give special attention to the other connectives: 

implication 

metaimplication 

logical equivalence 

We now go on to review these questions, first in formal logic then in fuzzy logic.  

Consider two formal propositions℘ and ≿. The compound proposition"℘ implies ≿." 

Denoted℘ >≿, corresponds to the truth table in Figure 39.2. 

 

Fig. 38.2 

To this compound proposition corresponds, for the subset A associated with℘ and the subset 

B associated with ≿, the set operation 𝐴̅ ∪ 𝐵. 

Now we consider the compound proposition"℘ metaimplies≿," denoted ℘ ⇒≿. To 

this metaimplication one gives the following sense: when ℘ is true, ≿ is always true (the 

syllogism rule is happily recovered here), but one may affirm nothing when℘ is false, ≿may 

be just as well be true as false, Thus, a statement like "if the sea is made of sweet cider, I will 

change myself into a siren" is correct, the sea being, alas, evil to drink and certainly not made 

of sweet cider. The connection⇒ therefore reduces to: if℘ ⇒≿ is necessary that℘ be true 

only when≿ is also. 

One must guard therefore against confusing ℘ >≿ and ℘ ⇒≿. The first is an 

operation of logic. 
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℘ >≿= ℘̅∇≿ (𝑖𝑛 𝑜𝑛𝑒 𝑛𝑜𝑡𝑖𝑜𝑛) 

                              = (¬℘)∇(≿)(𝑖𝑛 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑛𝑜𝑡𝑖𝑜𝑛) 

The second is a metalogical operation that may not be brought to (39.11). But the habit has 

been taken of calling metaimplication implication and thus confusing the two. The compound 

proposition℘ >≿ does not introduce a cause and effect relation, nor a proof of 2 with respect 

to 2, contrary to that which holds for ℘ ⇒≿ 

One may present the false paradox introduced by ℘ >≿ in the following terms: since 

the propositions ℘and≿ have not been analyzed, since they occur only through their contents, 

since the only given accessible is the logical value of each, ℘ >≿ may not introduce a 

relation of cause and effect. But if one knows a priori that℘ is true and that ℘ >≿ is true, 

then one may conclude that≿ is true. 

We present an example cited in reference [3K].Let℘ and≿ be the following 

propositions, which we shall examine considering the table of Figure 39.2: 

℘:  Napoléon died at Saint-Hélène(true) 

≿:  Vercingetorix wore a moustache (one is not sure) 

℘ >≿: true if ≿ is true 

℘: Two and two are five (false) 

≿: 2 is a prime number (false) 

℘ >≿: is true 

℘: The moon is made of gruyère cheese(false) 

≿: 17 is prime(true) 

℘ >≿: is true 

℘: 17 is prime(true) 

≿: 16 is prime(false) 

℘ >≿: is false 
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Logical equivalence is less ambiguous. This will be defined by the truth table in Figure 38.3. 

 

Fig. 38.3 

Like implication, logical equivalence does not bring the contents of the two 

propositions into a causal relationship. 

To this compound proposition corresponds, for the subset A associated with℘ and the 

subset 𝐵 associated with ≿, the set operation (𝐴̅ ∪ 𝐵) ∩ (𝐴 ∪ 𝐵̅). 

Metaequivalence carries the same name usually:℘ is equivalent to ≿, denoted℘ ⇒≿ 

that is,℘ metaimplies≿ and ≿ metaimplies℘, because the symmetry leads to a truth table 

identical to that of equivalence℘ ≡≿. This is why one may confuse these without ambiguity. 

Fuzzy propositions of the types fuzzy implication and fuzzy equivalence will be 

defined respectively with reference to the operations 𝐴 ∪ 𝐵and (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐵), We insist 

on the fact that one mast, as for intersection, union, and negation, pass through the reference 

set and the associated membership set. 

In order to define a metaimplication in furzy logic we shall use the notion of a binary 

relation. A as that represented in Figures 39.4 and 39.5 gives an example where 𝑥𝑖 ∈ 𝐸1, 𝑦𝑖 ∈

𝐸2. One sees evident here: 

𝑖𝑓 𝑥 = 𝑥1 𝑡ℎ𝑒𝑛 𝑦 = 𝑦2, 

𝑖𝑓 𝑥 = 𝑥2 𝑡ℎ𝑒𝑛 𝑦 = 𝑦6, 

𝑖𝑓 𝑥 = 𝑥3 𝑡ℎ𝑒𝑛 𝑦 = 𝑦1, 
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𝑖𝑓 𝑥 = 𝑥7 𝑡ℎ𝑒𝑛 𝑦 = 𝑦1, 

 

     Fig. 38.4           Fig. 38.5 

Figure 38.6, on the other hand, will correspond to an element of 𝐸1 a fuzzy subset of 

𝐸2: 

If 𝑥 = 𝑥1 then 𝐵 = {(𝑦1|0,8), (𝑦2|1), (𝑦3|0,3), (𝑦4|1), (𝑦5|0,9), (𝑦6|0,9)}, 

If 𝑥 = 𝑥2 then 𝐵 = {(𝑦1|0,2), (𝑦2|0,9), (𝑦3|1), (𝑦4|0), (𝑦5|0,6), (𝑦6|1)}, 

If 𝑥 = 𝑥3 then 𝐵 = {(𝑦1|0,3), (𝑦2|0,8), (𝑦3|0,9), (𝑦4|1), (𝑦5|0,8), (𝑦6|0,1)}, 

……… 

If 𝑥 = 𝑥7 then 𝐵 = {(𝑦1|0,1), (𝑦2|1), (𝑦3|0), (𝑦4|0,9), (𝑦5|0,3), (𝑦6|1)} 

But in Section 15 we have defined the possibility of a correspondence between fuzzy 

subsets where 𝐴 ⊂ 𝐸1and 𝐵 ⊂ 𝐸2; this was done with the aid of the notion of a conditioned 

fuzzy subset The relation giving the fuzzy subset 𝐵 corresponding to the fuzzy 

subset 𝐴 is then 
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Fig. 38.6 

(𝜇𝐵(𝑦)) = MAX
𝑥∈𝐸1

MIN(𝜇𝐵(𝑦|𝑥). 𝜇𝐴(𝑥)) 

We have given an example in Section 15 [see (15.3)-(15.11)]; here we take up another 

example using the fuzzy relation of Figure 38.6. 

Suppose that 

𝐴 = {(𝑥1|0,2), (𝑥2|0,3), (𝑥3|0,5), (𝑥4|1), (𝑥5|0), (𝑥6|0), (𝑥7|0,8)} 

One sees successively 

𝜇𝐵(𝑦1) = MAX[𝑀𝐼𝑁 (0,8 .  0,2),𝑀𝐼𝑁(0,2 . 0,3),𝑀𝐼𝑁(0,3 .  0,5),𝑀𝐼𝑁(0,5 .  1), 

                                                             𝑀𝐼𝑁(1 .  0),𝑀𝐼𝑁(0,6 .  0),𝑀𝐼𝑁(0,1 .  0,8)] . 

= 𝑀𝐴𝑋[0,2 ; 0,2; 0,5; 0; 0; 0,1] = 0,5.                                               

𝜇𝐵(𝑦2) = MAX[𝑀𝐼𝑁 (1 .  0,2),𝑀𝐼𝑁(0,9 . 0,3),𝑀𝐼𝑁(0,8 .  0,5),𝑀𝐼𝑁(0,   1), 

                                                             𝑀𝐼𝑁(0,2 .  0),𝑀𝐼𝑁(0,8 .  0),𝑀𝐼𝑁(1 .  0,8)] . 

= 𝑀𝐴𝑋[0,2 ; 0,3; 0,5; 0; 0; 0,0,8] = 0,8.                                               

and in the same manner 
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𝜇𝐵(𝑦3) = 1, 𝜇𝐵(𝑦4) = 1, 𝜇𝐵(𝑦5) = 0,8 , 𝜇𝐵(𝑦6) = 0,9 

The calculations have been presented in Figure 39.7, where the operation * corresponds to 

max-min. 

 

Fig. 38.7 

One therefore has: if 

𝐴 = {(𝑥1|0,2), (𝑥2|0,3), (𝑥3|0,5), (𝑥4|1), (𝑥5|0), (𝑥6|0), (𝑥7|0,8)} 

then 

𝐵 = {(𝑦1|0,5), (𝑦2|0,8), (𝑦3|1), (𝑦4|1), (𝑦5|0,8), (𝑦6|0,9)} 

In this fashion we show that considering an if-then proposition corresponds well to what is 

used in formal relations. 

Let 

𝐴 = {(𝑥1|0), (𝑥2|0), (𝑥3|0), (𝑥4|1), (𝑥5|0), (𝑥6|0), (𝑥7|0)} 

that is 

𝐴 = {𝑥4} 

Referring to the correspondence again, one finds 

𝐵 = {(𝑦1|0), (𝑦2|1), (𝑦3|0), (𝑦4|0), (𝑦5|0), (𝑦6|0)} 

that is, 
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𝐵 = {𝑦2} 

which may be stated 

𝑖𝑓 𝐴 = {𝑥4}, 𝑡ℎ𝑒𝑛 𝐵 = {𝑦2} 

or again 

𝑖𝑓 𝑥 = 𝑥4, 𝑡ℎ𝑒𝑛 𝑦 = 𝑦2 

We review all the propositions stated thus far: 

fuzzy conjunction (fuzzy and): defined by 𝐴 ∩ 𝐵. 

fuzzy disjunction (fuzzy or): defined by 𝐴 ∪ 𝐵. 

fuzzy negation (fuzzy not): defined by 𝐴. 

fuzzy implication: defined by𝐴 ∪ 𝐵. 

fuzzy equivalence: defined by (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐵). 

fuzzy if-then: defined by 𝜇𝐵(𝑦) = MAX
𝑥
𝑀𝐼𝑁 (𝜇𝐵(𝑦|𝑥). 𝜇𝐴(𝑥)) 

(fuzzy metaimplication)  

This last was not a fuzzy logic, but rather a fuzzy metalogic, proposition. 

In Volume II, devoted to applications of the theory of fuzzy subsets, various sections 

will reconsider these notions in detail and will give a number of developments. 

39. THE THEORY OF FUZZY SUBSETS AND THE THEORY OF PROBABILITY 

 Many persons, without too much thought, state: Why be interested in the theory of 

fuzzy subsets? The theory of probability serves very well for all that.  There are, in fact, 

several common aspects between the two theories; but these theories relate to some 

considerations that it is appropriate to distinguish.  We proceed first to review the basics of 

the theory of probability and then examine that which joins and that which separates these 

theories. 

 Axiomatics of the theory of probability. 
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(1) Case of a finite reference set.  Let E be a finite reference set, I. (E) its finite power set, 

and ∆ a subset of I (E) necessarily containing E.  The subset ∆ will be called a family 

and one will say that this family is probabilizable if the following two conditions are 

satisfied: 

a) ∀ ⋀ ∈ ∆ :  A̅ ∈ ∆ . 

b) ∀ ⋀ ∈ ∆ and  ∪ 𝐵 ∈ ∆ . 

For example, let 

E = {𝑎, 𝑏, 𝑐, 𝑑} . 

∆ = {(∅. (b). (c). (b. c)(a. d). (a. b. d). (a. c. d). E} . 

The family ∆ is probabilizable.   

Theory of fuzzy subsets and theory of probability 

Properties (40.1) and (40.2) imply several others as the reader may easil prove. 

c) ∅ ∈ ∆ . 

d) ∀ A and ∀ B : A ∩ B ∈ ∆ . 

c) A − B = A ∩ B̅ ∈ ∆ . 

 A probabilizable family ∆ constitutes a ring for the operations. (disjunctive sim) and 

∩ (intersection).  Indeed, one verifies: 

∀ A . B. C ∈ ∆ 

(A ∗  B) ∗ C = A ∗ (B ∗  C) associativity for ∗ ; 

A ∗  ∅ = ∅ ∗ A = A. ∅ is the identity for ∗ ; 

A ∗  A = ∅, every A has a inverse (it its own inverse); 

A ∗  B = B ∗  A . commutativity. 

Thus we have a commutative group with respect to the operation ∗ .  On the other hand, 

(A ∩ B) ∩ C = A ∩ (B ∩ C). associativity for ∩; 

And finally 

(A ∗ B) ∩ C = (A ∩ C) ∗ (B ∩ C). distributivity on the left and right 
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C ∩ (A ∗ B) = (C ∗ A) ∗ (C ∩ B). with respect to ∗. 

Thus (∆,∗ ,∩ ) make up a ring structure. 

Finally, any family ∆ forms a distributive and complemented lattice, that is, a Boolean 

lattice, in which the order relation is inclusion.  Thus for the family ∆ given by (40.4), one 

obtains the boolean lattice represented in figure 40.1 

 A subset F (I (E) is called a probability base over E if with respect to F, using 

complementation and union, one may arrive at a probabilistic family ∆ C I (E).  One also says 

that F is a generator of ∆; such a generator is not in general unique. 

 

Figure 39.1 

For example, referring Figure 39.1. one easily sees that 

F = {(𝑎, 𝑑), (𝑏), (𝑐)}. 

is a generator of (40.4). 

(2) Case of an infinite reference ser (denumerable or not),  In this case I (E) is not 

denumerable; let ∆ be a subset of I (E) necessarily containing E.  One will say that the 

family ∆ is probabilizable if: 
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g) ∀⋀ ∈ ∆ : A̅ ∈ ∆. 

h) for any denumerable sequence, 𝐴1   .. 𝐴2 ……..  𝐴𝑛 ……. 

𝐴1   .. 𝐴2 ……..  𝐴𝑛 …….∈ ∆ ⟹ 𝐴1 ∪ 𝐴2 ∪……..  ∪ 𝐴𝑛 ∪……∈ ∆. 

 Probability.  Theoretical definition.  Given a probabilizable family ∆⊂ I (E).  a 

probability is a mapping of ∆ into 𝑅∗ having the following properties where the value taken 

by X in 𝑅′ is written pr(x): 

i) ∀ A ∈ ∆ : pr(A) ≥ 0. 

𝑗)   ∀ A ∈ ∆ and ∀ B ∈ ∆: 𝐴 ∩ 𝐵 = ∅ ⟹ pr(A ∪B) = pr(A) + pr(B). 

𝑘)  pr(E) = 1. 

With respect to the five axioms (a), (b), (i), (j), and (k) it is easy to prove a certain number 

of properties: 

𝑝𝑟(∅)= 0 

𝑝𝑟(A)= 1 + 𝑝𝑟(A). 

𝐵 ⊂ 𝐴 ⟹  𝑝𝑟(B)  ≤ 𝑝𝑟(A). 

Returning to the nation of a fuzzy subset, we insist on the following important point: 

"it is not sufficient to associate with a subset a number 𝑝 ∈ [0,1] such hat p is  

brobability;  it is necessary that the subset and p satisfy the five fundamental axioms 

mentioned above".  

Difference between the probability concept for fuzzy subset, and for ordinary 

subsets.  We consider a very simple finite example.  How does one proceed in the theory of 

fuzzy subsets? 

E = {𝑎, 𝑏, 𝑐, 𝑑}. 

One defines a fuzzy subset by assigning to each element a value of the membership function; 

for example. 

A = {(𝑎 0.3), (𝑏 0.7), (𝑐 10), (𝑑 1)} 

In probability theory one assigns the numbers 𝑝 ∈ [0,1] to the ordinary subsets constituting a 

probabilizable family.  Thus, letting ∆ be given by (40.4) one might have, for example. 
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𝑃𝑟(∅) = 0.   

𝑝𝑟{(𝑏)}=0.3.  𝑝𝑟{(𝑐)}=0.2.  𝑝𝑟{(𝑎, 𝑑)}=0.5. 𝑝𝑟{(𝑎, 𝑏, 𝑑)}=0.8. 

 𝑝𝑟{(𝑎, 𝑐, 𝑑)}=0.7. 𝑝𝑟{( 𝑏, 𝑐)}=0.5. 𝑝𝑟{(E)}=1.   

 As one sees here the two considerations are quite distinct, and one may conceive (and 

this is useful) of the assignment of probabilities to fuzzy subsets by taking each fuzzy 

subset belonging to a reference set formed by elements that are fuzzy subsets of 

another reference set.  For example, assign a probability to A and write. 

 𝑃𝑟(A) = 0. 6  

 One may imagine a probability theory of fuzzy events.  But, one must evidently 

distinguish between the two theories, that of fuzzy subsets and that of the probabilization of 

ordinary subsets. 

 The theory of fuzzy events.  But, one must evidently distinguish between the two 

theories, that of fuzzy subsets and that of the probabilization of ordinary subsets. 

 The theory of fuzzy subsets is related to the theory of a vector lattice, and probability 

theory to the theory of Boolean lattice. 

UNIT V  

THE LAWS OF FUZZY COMPOSITION 

40.THE LAWS OF FUZZY COMPOSITION 

 In this chapter, the reader should now go on to consider, is a first introduction to some 

important developments that will become more and more involving for them.  

LAW OF INTERNAL COMPOSITION  

 The law of internal composition on a set E, is a mapping E x E into E. In other words, 

to each ordered pair (x,y) ∈ 𝐸 × 𝐸 ,   one corresponds one and only one element 𝑧 ∈ 𝐸.   

LAW OF EXTERNAL COMPOSITION  

 Let 𝑥 ∈ 𝐸1, 𝑦 ∈ 𝐸2 and 𝑧 ∈ 𝐸3.  A mapping 𝐸1 × 𝐸2 into 𝐸3 is called a law of external 

composition.  In other words, to each ordered pair (x, y) one corresponds an element 𝑧 ∈ 𝐸3, 

and only one such element. 

 If and only if 𝐸1 = 𝐸2 = 𝐸3 is the law of composition internal. 
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Examples :  

(i) If 𝐸1 = 𝐸2 = 𝑅 (the set of real numbers), if the law is that of ordinary addition 

+, this law is internal since the addition of a real with a real always gives a 

real; indeed one has 𝐸3 = 𝑅. 

(ii) If 𝐸1 = 𝐸2=the set of free vectors in a plane and if one there defines × as the 

vector product (cross product) of the two vectors , one has a law of external 

composition. 

GROUPOID 

 An ordered pair formed by a set E and an internal law of composition * defined on 

this set is called a groupoid.  This is denoted by (E,*). 

Examples: 

(i) The law of composition presented in the following figure gives a groupoid. 

E 

E 

 A B C D E 

 A B A D D C 

B C B B A E 

C A A A B C 

D C A B B C 

E E C A A D 

                             (Fig. 44.1) 

(ii)   The greatest common divisor and least common multiple of positive integers define 

internal laws defined throughout the set 𝑁0 𝑜𝑓 positive integers.  If ∗1 indicates the 

greatest common divisor and ∗2 the least common multiple, then (𝑁0,∗1) and (𝑁0,∗2) 

are groupoids. 

LAW OF FUZZY INTERNAL COMPOSITION, FUZZY GROUPOID 

 Let E be a reference set and 𝐴⏟ ⊂ 𝐸.  A law of internal composition on 𝑃⏟ (𝐸), that is, a 

mapping from  𝑃⏟ (𝐸) × 𝑃⏟ (𝐸) into 𝑃⏟ (𝐸).  In other words, to each ordered pair (𝐴⏟ , 𝐵⏟), where 
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𝐴⏟ ⊂ 𝐸, 𝐵⏟ ⊂ 𝐸 one corresponds a fuzzy subset 𝐶⏟ ⊂ 𝐸 and only one.  If m and n are finite, 

one describes with these conditions a finite groupoid, and an infinite groupoid if m or/and n 

are not finite. 

The laws of internal composition and the groupoids thus defined will be called laws of 

fuzzy internal composition or fuzzy internal laws and fuzzy groupoids. 

Example : 

Let E={A, B} and M={0, ½, 1}. 

 𝑃⏟ (𝐸) = {{(A|0), (B|0)}, {(A|0), (B|1/2 )}, {(A|1/2), (B|0)}, {(A|1/2), (B|1/2)}, 

                {(A|0), (B|1)}, {(A|1), (B|0)}, {(A|1/2), (B|1)}, {(A|1), (B|1/2)}, {(A|1), (B|1)}} 

Designate, in order to simplify writing, for 𝑋⏟ ⊂ 𝐸,  

{(𝐴|𝜇𝑋⏟(𝐴)) , (𝐵|𝜇𝑋⏟(𝐵))} 

by 

(𝜇𝑋⏟(𝐴), 𝜇𝑋⏟(𝐵))  

Thus {(𝐴|
1

2
) , (𝐵|0)} will be designated by (1/2, 0).  With this notation, the table of figure 

45.1 represents a fuzzy groupoid. 

 

 

 

Figure 45.1 

Example 2: 
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 If the operation * being considered is intersection ∩ and if 𝐴⏟ ⊂ 𝐸 and 𝐵⏟ ⊂ 𝐸, one 

may form a groupoid with the fuzzy subsets 𝐴⏟ ∩ 𝐵⏟.  

CONSTRUCTION OF A FUZZY GROUPOID 

 It suffices to be given a reference set E, finite or not, to deduce 𝑃⏟ (𝐸) explicitly or not, 

and to define a law * that corresponds to each ordered pair of fuzzy subsets (𝐴⏟ , 𝐵⏟) one and 

only one fuzzy subset 𝐶⏟ ( 𝐴⏟ , 𝐵⏟ , 𝐶⏟ ⊂ 𝐸). 

Example 1:  

 Consider 45.1 and 45.2 again with the law 

𝐴⏟ ∗ 𝐵⏟ = 𝐴⏟ ∩ 𝐵⏟ 

that is,  

𝜇𝐴⏟∩ 𝐵⏟(𝑥) = 𝑀𝐼𝑁 (𝜇𝐴⏟(𝑥), 𝜇𝐵⏟(𝑥)) = 𝜇𝐴⏟(𝑥)⋀𝜇𝐵⏟(𝑥) 

The constructed groupoid is represented in Figure 45.2. 

 

Figure 45.2 

Example 2: 

We attempt to define the “fuzzy positive integers”.  We begin by defining a fuzzy 

number 1⏟ with a membership function 𝜇1⏟(𝜂), arbitrary but such that  
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∑𝜇1⏟(𝜂) = 1, 𝑛 = 0,1,2,3…………

∞

𝜂=0

 

For example,  

1⏟ = {(0|0,1), (1|0,8), (2|0,1)……… . (𝑁 > 2|0)} 

We form 2⏟ in the following fashion. 

𝜇2⏟(0) = 𝜇1⏟(0). 𝜇1⏟(0) = (0,1). (0,1) = 0.01 

𝜇2⏟(1) = 𝜇1⏟(0). 𝜇1⏟(1) + 𝜇1⏟(1). 𝜇1⏟(0) = (0,1). (0,8) + (0,8). (0,1) = 0.16 

𝜇2⏟(2) = 𝜇1⏟(0). 𝜇1⏟(2) + 𝜇1⏟(1). 𝜇1⏟(1) + 𝜇1⏟(2). 𝜇1⏟(0)

= (0,1). (0,1) + (0,8). (0,8) + (0,1). (0,1) = 0.66 

𝜇2⏟(3) = 𝜇1⏟(1). 𝜇1⏟(2) + 𝜇1⏟(2). 𝜇1⏟(1) = (0,8). (0,1) + (0,1). (0,8) = 0.16 

𝜇2⏟(4) = 𝜇1⏟(2). 𝜇1⏟(2) = (0,1). (0,1) = 0.01 

𝜇2⏟(𝑁 > 4) = 0 

Thus 2⏟ = {(0|0.01), (1|0.16), (2|0.66), (3|0.16), (4|0.01),…… , (𝑁 > 4|0)} 

Thus we generalize the formula that  

𝜇𝐴⏟∗𝐵⏟(𝑁) =∑𝜇𝐴⏟(𝑟). 𝜇𝐵⏟(𝑁 − 𝑟) =∑𝜇𝐵⏟(𝑟). 𝜇𝐴⏟(𝑁 − 𝑟)

𝑁

𝑟=0

𝑁

𝑟=0

 

For 3⏟ 

𝜇3⏟(𝑁) = 𝜇2⏟∗1⏟(𝑁) =∑𝜇2⏟(𝑟). 𝜇1⏟(𝑁 − 𝑟),𝑁 ≤ 6

𝑁

𝑟=0

. 

Thus, 3⏟ = {
(0|0.001), (1|0.024), (2|0.195), (3|0.560),

(4|0.195), (5|0.024), (6|0.001)…… . . (𝑁 > 6|0)
} 

and thus it goes. 

PROPERTIES OF GROUPOID 

(i) Associativity : (𝐴⏟ ∗ 𝐵⏟) ∗ 𝐶⏟ = 𝐴⏟ ∗ (𝐵⏟ ∗ 𝐶⏟) 

(ii) Commutativity : 𝐴⏟ ∗ 𝐵⏟ = 𝐵⏟ ∗ 𝐴⏟ 

Example 3: 

We consider two fuzzy subsets 𝐴⏟ ⊂ 𝑅 and 𝐵⏟ ⊂ 𝑅 with which we produce other fuzzy 

subsets.  Let 

𝜇𝐴⏟(𝑥) =
1

√2𝜋𝜎12
𝑒
−
(𝑥−𝑎)2

2𝜎1
2 ,     𝑎, 𝜎1 ∈ 𝑅

∗ 



218 
 

𝜇𝐵⏟(𝑥) =
1

√2𝜋𝜎22
𝑒
−
(𝑥−𝑏)2

2𝜎2
2 ,       𝑏, 𝜎2 ∈ 𝑅

∗ 

One then considers the composition product 

𝜇𝐴⏟∗𝐵⏟(𝑥) = ∫ 𝜇𝐴⏟(𝑡)𝜇𝐵⏟(𝑥 − 𝑡)𝑑𝑡

∞

−∞

 

= ∫ 𝜇𝐵⏟(𝑡)𝜇𝐴⏟(𝑥 − 𝑡)𝑑𝑡

∞

−∞

 

=
1

√2𝜋(𝜎1
2 + 𝜎22)

𝑒
−

(𝑥−𝑎−𝑏)2

2(𝜎1
2+𝜎2

2) 

This permits one to define the fuzzy number 𝐴⏟ ∗ 𝐵⏟. 

In the same manner one generates other fuzzy numbers. 

𝐴⏟ ∗ 𝐴⏟ , 𝐵⏟ ∗ 𝐵⏟ ,𝐴⏟ ∗ 𝐴⏟ ∗ 𝐴⏟ , 𝐴⏟ ∗ 𝐴⏟ ∗ 𝐵⏟ , …… . 𝐴⏟𝑟 ∗ 𝐵⏟𝑠 , ……… .. 

where the superscripts indicate that there are r-1 compositions of 𝐴⏟ and s-1 compositions of 

𝐵⏟. 

With the two fuzzy numbers 𝐴⏟ and 𝐵⏟ one then generates 

𝐴⏟ , 𝐵⏟ , 𝐴⏟ ∗ 𝐴⏟ ,𝐴⏟ ∗ 𝐵⏟ , 𝐵⏟ ∗ 𝐵⏟ ,…… . . 𝐴⏟𝑟 ∗ 𝐵⏟𝑠 , ………. 

and the set  

𝑄 = {𝐴⏟ ,𝐵⏟ , 𝐴⏟ ∗ 𝐴⏟ , 𝐴⏟ ∗ 𝐵⏟ , 𝐵⏟ ∗ 𝐵⏟ ,…… . . 𝐴⏟𝑟 ∗ 𝐵⏟𝑠 , ……… . } 

has the structure of a groupoid, which is moreover associative an commutative. 

PRINCIPAL PROPERTIES CONCERNING FUZZY GROUPOIDS 

 Let * be a law of internal composition of a fuzzy groupoid, we define several 

properties.  This groupoid will be designated by  (𝑃⏟ (𝐸),∗) . 

Commutativity 

 If, for all ordered pairs (𝐴⏟ ,𝐵⏟) ∈  𝑃⏟ (𝐸) × 𝑃⏟ (𝐸) , 𝐴⏟ ∗ 𝐵⏟ = 𝐵⏟ ∗ 𝐴⏟ 

The law of internal composition is commutative.  Also the groupoid is commutative.  Thus, 

for example, the groupoid of Fig. 45.2 is commutative whereas of Fig. 45.1 is not.   

For example, in Fig. 45.2, we may verify 

{(𝐴|
1

2
) , (𝐵|1)} ⋀{(𝐴|1), (𝐵|0)} = {(𝐴|

1

2
) , (𝐵|0)}. 
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{(𝐴|1), (𝐵|0)}⋀ {(𝐴|
1

2
) , (𝐵|1)} = {(𝐴|

1

2
) , (𝐵|0)}. 

Being given the definition of the law * for fuzzy subsets, one may thence  

𝜇𝐴⏟∗𝐵⏟(𝑥) = 𝜇𝐴⏟(𝑥)⍟𝜇𝐵⏟(𝑥). 

commutativity for ⍟ implies commutativity for *, and vice versa. 

Associativity: 

 If ∀ 𝐴⏟ , 𝐵⏟ , 𝐶⏟ ⊂ 𝐸:  (𝐴⏟ ∗  𝐵⏟) ∗  𝐶⏟ = 𝐴⏟ ∗ ( 𝐵⏟ ∗  𝐶⏟), 

one says that the law is associative, one also says that the groupoid is associative. 

 Thus, the groupoid of Fig. 45.2 is associative, whereas that of Fig. 45.1 is not.  Thus 

in Fig. 45.2 one may verify, using the abbreviated notation, 

(
1

2
,
1

2
)⋀(1,0)⋀(

1

2
, 1) = (

1

2
, 0)⋀(

1

2
, 1) = (

1

2
, 0), 

(
1

2
,
1

2
)⋀(1,0)⋀(

1

2
, 1) = (

1

2
,
1

2
)⋀ (

1

2
, 0) = (

1

2
, 0).   

Being given the definition of the law * for the fuzzy subsets, we have,  

(𝜇𝐴⏟(𝑥)⍟𝜇𝐵⏟(𝑥))⍟𝜇𝐶⏟(𝑥) = 𝜇𝐴⏟(𝑥)⍟(𝜇𝐵⏟(𝑥)⍟𝜇𝐶⏟(𝑥)).  

associativity for ⍟ implies associativity for *, and vice versa. 

Identity element 

 An element 𝑒 ∈ 𝐸, if it exists, such that  

∀ 𝑎 ∈ 𝐸: 𝑒 ∗ 𝑎 = 𝑎. 

This element e is called  a left identity. 

In the same manner, an element 𝑒′ ∈ 𝐸, if it exists, such that  

∀ 𝑎 ∈ 𝐸: 𝑎 ∗ 𝑒′ = 𝑎. 

This element 𝑒′ is called  a right identity. 

 An element that is both a left identity and a right identity is called an identity. 

 When an identity element exists, it is always unique.  In fact, if there exist another 

such element e, we have  

𝑒 ∗ 𝑒 = 𝑒 ∗ 𝑒 = 𝑒 

In a fuzzy groupoid one may define an identity in the same manner.  We take the example of 

Figure 45.2, it is evident that (1,1) is a left identity and a right identity, that is, an identity.  

In fact ∀𝑥 ∈ {0,
1

2
, 1}  𝑎𝑛𝑑 ∀𝑦 ∈ {0,

1

2
, 1}. 

(1,1)⋀(𝑥, 𝑦) = (𝑥, 𝑦)⋀(1,1) = (𝑥, 𝑦). 

We shall say that a fuzzy groupoid possesses a left identity 𝑈⏟ for the law * if  
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∀𝐴⏟ ⊂ 𝐸: 𝑈⏟ ∗ 𝐴⏟ = 𝐴⏟ 

and possesses a right identity 𝑈′⏟  for this law if, 

∀𝐴⏟ ⊂ 𝐸: 𝐴⏟ ∗ 𝑈′⏟ = 𝐴⏟ 

and possess a unique identity if 

∀𝐴⏟ ⊂ 𝐸: 𝑈⏟ ∗ 𝐴⏟ = 𝐴⏟ ∗ 𝑈⏟ = 𝐴⏟. 

 We have seen with the example of Fig. 45.2 the case of a fuzzy groupoid that 

possesses an identity. 

Inverse element 

We consider a law for which there exists an identity e.  Then let there be two elements 

𝑎 𝑎𝑛𝑑 𝑎̅ ∈ 𝐸.  If    

𝑎̅ ∗ 𝑎 = 𝑒 

then 𝑎̅ is the left inverse of a.  In the same manner, if 

𝑎 ∗ 𝑎′̅ = 𝑒 

one says that 𝑎′̅ is the right inverse of a.  Finally if 𝑎′̅ = 𝑎, 𝑡ℎ𝑒𝑛  

𝑎̅ ∗ 𝑎 = 𝑎 ∗ 𝑎̅ = 𝑒. 

then 𝑎̅ is the inverse of a. 

        In a fuzzy groupoid we define an inverse for each element. 

       Again we take the example of Fig. 45.2, We have seen that there exists an identity, 

which is (1,1).  It is clear that there is only one element that composed with itself is able to 

give (1,1). 

 For any others such that (𝑎, 𝑏) ⊰ (1,1)𝑎𝑛𝑑 (𝑎′, 𝑏′) ⊰ (1,1), such that 

(𝑎, 𝑏)⋀ (𝑎′, 𝑏′) ⊰ (1,1). 

Thus the groupoid of Fig. 45.2 does not have the property of possessing an inverse for each 

of its elements. 

 More generally, if the law * is ∪ 𝑜𝑟 ∩, one cannot have an inverse.  In the case of ∪, 

there is an identity that is defined by :   ∀𝑥 ∈ 𝐸: 𝜇𝐴⏟(𝑥) = 0; and in the case of ∩, there is an 

identity defined by: ∀𝑥 ∈ 𝐸: 𝜇𝐴⏟(𝑥) = 1.  But for neither of these cases can one   define an 

inverse, no matter what the fuzzy subset. 

∀𝑥 ∈ 𝐸: 𝜇𝐴⏟(𝑥) = 0 ⇔ 𝐴⏟ = ∅. 

∀𝑥 ∈ 𝐸: 𝜇𝐴⏟(𝑥) = 1 ⇔ 𝐴⏟ = 𝐸. 
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But, if ∅ is the identity for ∪ and E is the identity for  ∩, these do not allow one to define 

inverses; any element such as 𝐵⏟ may not give  

𝐴⏟ ∪ 𝐵⏟ = ∅, 𝑢𝑛𝑙𝑒𝑠𝑠 𝐴⏟ = ∅ 𝑎𝑛𝑑 𝐵⏟ = ∅  

𝐴⏟ ∪ 𝐵⏟ = 𝐸, 𝑢𝑛𝑙𝑒𝑠𝑠 𝐴⏟ = 𝐸 𝑎𝑛𝑑 𝐵⏟ = 𝐸.  

Distributivity 

 Let * and ∗′ represent two laws of internal composition on the same set E.   

If ∀ 𝐴⏟ ,𝐵⏟ , 𝐶⏟ ⊂ 𝐸:  𝐴⏟ ∗ (𝐵⏟ ∗′  𝐶⏟) = (𝐴⏟ ∗ 𝐵⏟) ∗′ ( 𝐴⏟ ∗  𝐶⏟) 

We say that * is left distributive with respect to the law ∗′. 

Likewise, if ∀ 𝐴⏟ , 𝐵⏟ , 𝐶⏟ ⊂ 𝐸:  𝐴⏟ ∗′ (𝐵⏟ ∗ 𝐶⏟) = (𝐴⏟ ∗′ 𝐵⏟) ∗ ( 𝐴⏟ ∗′  𝐶⏟)  

We say that ∗′ is right distributive with respect to the law *. 

       A law * left and right distributive with respect to another law ∗′ is said to be distributive 

with respect to ∗′.  Then we write 

(𝐴⏟ ∗′ 𝐵⏟) ∗ (𝐶⏟ ∗′ 𝐷⏟) = ( 𝐴⏟ ∗  𝐶⏟) ∗′ ( 𝐴⏟ ∗  𝐷⏟) ∗′ (𝐵⏟ ∗ 𝐶⏟) ∗′ (𝐵⏟ ∗ 𝐷⏟). 

 Consider, for example, the groupoid already presented in Fig. 45.2.  We may verity 

that  

∆1= {(0,0), (0,
1

2
) , (

1

2
, 0)}   is closed. 

∆2= {(
1

2
, 1) , (1,

1

2
)}   is not closed. 
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Figure 46.1 

In Fig. 46.1 we have represented the same groupoid as that in Fig. 45.2 but with the law ∪: 

∆1= {(0,0), (0,
1

2
) , (

1

2
, 0)}   is not closed. 

∆2= {(
1

2
, 1) , (1,

1

2
)}   is not closed. 

∆3= {(
1

2
, 1) , (1,

1

2
) , (1,1)}   is closed. 

 It is interesting to show how to obtain closed subsets for the examples of Figures 45.2 

and 46.1 with the aid of a Hasse diagram of the vector lattice representing 𝑃⏟ (𝐸), See Figure 

46.2. 

 

Figure 46.2 
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 The rule is as follows:  For the operation ∩, any subset of 𝑃⏟ (𝐸), in order to be closed 

must contain the inferior limit of any pair (𝐴⏟ , 𝐵⏟), 𝐴⏟ ,𝐵⏟ ∈ ∆.  Thus, 

{(0,0), (0,
1

2
) , (

1

2
, 0) , (1,0)}  is closed for  ∩.   On the other hand, 

{(0,
1

2
 ) , (

1

2
, 0) , (

1

2
, 1) , (1,

1

2
 )} is not closed for  ∩.  For the operation ∪, but considers 

superior limits.  Thus {(0,0), (0,
1

2
) , (

1

2
, 0) , (1,0)}  is not closed for  ∪, whereas 

{(0,
1

2
 ) , (

1

2
, 0) , (

1

2
, 1) , (1,

1

2
 )}  𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑓𝑜𝑟 ∪. 

Subgroupoids 

Any subset ∆⊂ 𝑃⏟ (𝐸) closed for a law * will be called a subgroupoid of (𝐸,∗) and be 

denoted (∆⊂ 𝐸,∗) or (∆,∗). 

FUZZY MONOIDS 

 Any fuzzy groupoid that is associative and has an identity will be called fuzzy 

monoid.   

 If a monoid possesses in addition the property of commutativity, one calls it a 

commutative monoid. 

 All the following fuzzy groupoids, defined by their membership functions and the 

internal law specified and indicated below, are monoids that are, moreover, commutative.    

  (𝑃⏟ (𝐸),∩) where  𝜇𝐴⏟∩𝐵⏟(𝑥) = 𝜇𝐴⏟(𝑥)⋀𝜇𝐵⏟(𝑥),𝐴⏟ , 𝐵⏟ ⊂ 𝐸.  

Associativity is evident.  The identity is the reference set E,  

  (𝑃⏟ (𝐸),∪) where  𝜇𝐴⏟∪𝐵⏟(𝑥) = 𝜇𝐴⏟(𝑥)⌄𝜇𝐵⏟(𝑥), 𝐴⏟ , 𝐵⏟ ⊂ 𝐸.  

Associativity is evident.  The identity is 𝜑. 

           (𝑃⏟ (𝐸),∙) where 𝜇𝐴⏟ ∙ 𝐵⏟(𝑥) = 𝜇𝐴⏟(𝑥)  ∙  𝜇𝐵⏟(𝑥), 𝐴⏟ , 𝐵⏟ ⊂ 𝐸. 

This is associative, with identity E. 

(𝑃⏟ (𝐸), +̃) where 𝜇𝐴⏟ +̃ 𝐵⏟(𝑥) = 𝜇𝐴⏟(𝑥) + 𝜇𝐵⏟(𝑥) − 𝜇𝐴⏟(𝑥) 𝜇𝐵⏟(𝑥), 𝐴⏟ , 𝐵⏟ ⊂ 𝐸. 

Associative, with identity 𝜑.  

(𝑃⏟ (𝐸), 𝜑) where 𝜇𝐴⏟ 𝜑 𝐵⏟(𝑥) = [𝜇𝐴⏟(𝑥)⌃(1 − 𝜇𝐵⏟(𝑥))] ⌄ [𝜇𝐵⏟(𝑥) ⌃ (1 − 𝜇𝐴⏟(𝑥))] , 𝐴⏟ , 𝐵⏟ ⊂ 𝐸. 

Associative, with identity 𝜑.  
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 A fuzzy monoid will be denoted by     (𝐸,∗) or preferable,   (𝑃⏟ (𝐸),∗).  

We shall see several fuzzy groupoids that are not monoids.  

Example 1 :  

 Let 𝐴⏟ , 𝐵⏟  𝑏𝑒 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜇𝐴⏟° 𝐵⏟(𝑥) = |𝜇𝐴⏟(𝑥) − 𝜇𝐵⏟(𝑥)|. 

Put 𝑎 = 𝜇𝐴⏟(𝑥)  , 𝑏 =  𝜇𝐵⏟(𝑥)  ,    𝑐 = 𝜇𝐶⏟(𝑥). 

and denote 𝑎 ⊚ 𝑏 = |𝑎 − 𝑏|. 

It is easy to show that  

(𝑎 ⊚ 𝑏)⊚ 𝑐 ≠ 𝑎 ⊚ (𝑏 ⊚ 𝑐) 

that is, ||𝑎 − 𝑏| − 𝑐| ≠ |𝑎 − |𝑏 − 𝑐||. 

For example, if 𝑎 = 0.3      ,       𝑏 = 0.5       ,         𝑐 = 0.9. 

||𝑎 − 𝑏| − 𝑐| = ||0.3 − 0.5| − 0.9| 

= |0.2 − 0.9| = 0.7 

|𝑎 − |𝑏 − 𝑐|| = |0.3 − |0.5 − 0.9|| 

= |0.3 − 0.4| = 0.1. 

This commutative groupoid is not a monoid since it is not associative. 

Example 2 :  

 Let 𝐴⏟ , 𝐵⏟  𝑏𝑒 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜇𝐴⏟° 𝐵⏟(𝑥) = |𝜇𝐴⏟(𝑥) − 𝜇𝐵⏟(𝑥)|. 

Put 𝑎 = 𝜇𝐴⏟(𝑥)  , 𝑏 =  𝜇𝐵⏟(𝑥)  ,    𝑐 = 𝜇𝐶⏟(𝑥). 

and denote 𝑎 ⊚ 𝑏 = 𝑎 + 𝑘𝑏 − 𝑎𝑏, 𝑘 ∈ [0,1]. 

Now, (𝑎 ⊚ 𝑏)⊚ 𝑐 = (𝑎 + 𝑘𝑏 − 𝑎𝑏) ⊚ 𝑐 

= (𝑎 + 𝑘𝑏 − 𝑎𝑏) + 𝑘(𝑎 + 𝑘𝑏 − 𝑎𝑏)𝑐 − (𝑎 + 𝑘𝑏 − 𝑎𝑏)𝑐 

= 𝑎 + 𝑘𝑏 + 𝑘𝑐 − 𝑎𝑏 − 𝑎𝑐 − 𝑘𝑏𝑐 + 𝑎𝑏𝑐. 

𝑎 ⊚ (𝑏 ⊚ 𝑐) = 𝑎 ⊚ (𝑏 + 𝑘𝑐 − 𝑏𝑐) 

= 𝑎 + 𝑘(𝑏 + 𝑘𝑐 − 𝑏𝑐) − 𝑎(𝑏 + 𝑘𝑐 − 𝑏𝑐) 

= 𝑎 + 𝑘𝑏 + 𝑘2𝑐 − 𝑎𝑏 − 𝑘𝑎𝑐 − 𝑘𝑏𝑐 + 𝑎𝑏𝑐. 
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[(𝑎 ⊚ 𝑏)⊚ 𝑐] − [𝑎⊚ (𝑏 ⊚ 𝑐)] = 𝑘𝑐 − 𝑘2𝑐 − 𝑎𝑐 + 𝑘𝑎𝑐 

= 𝑐(1 − 𝑘)(𝑘 − 𝑎). 

Thus, associativity does not hold, unless k=1. 

Fuzzy submonoid: 

 Let  (𝑃⏟ (𝐸), °) be a fuzzy monoid and ∆⊂ 𝑃⏟ (𝐸) be closed for the law ° then ∆ will be 

called a fuzzy submonoid of (𝑃⏟ (𝐸), °) and will be designated by (∆, °). 

Example : Consider the monoid (𝑃⏟ (𝐸),∪) represented in Figure 46.1. 

 

Figure 47.1 

 

Figure 47.2 

 

Figure 47.3 
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Figure 47.1-47.3 represent submonoids of this monoid. 

∆= {(0,0), (
1

2
, 1)} 

∆′= {(0,0), (0,
1

2
) , (1,

1

2
)} 

∆′′= {(0,0), (0,
1

2
) , (

1

2
, 0) , (

1

2
,
1

2
) , (

1

2
, 1)} 

𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑠𝑒𝑣𝑒𝑟𝑎𝑙 𝑜𝑡ℎ𝑒𝑟𝑠. 

Theorem : 

If (∆,∘)  and (∆′,∘) are submonoids of (𝑃⏟ (𝐸),∘) then (∆ ∩ ∆′,∘) is a submonoid of 

(𝑃⏟ (𝐸),∘). 

Proof :  

That intersection preserves associativity and the identity is evident. 

We show then that ∆ ∩ ∆′ remains closed for ∘. 

Let 𝐴⏟ , 𝐵⏟  ∈ ∆ ∩ ∆′.  Then 𝐴⏟ ∘  𝐵⏟ belongs to ∆ by hypothesis. 

It also belongs to ∆′ by hypothesis.  Then 𝐴⏟ ∘ 𝐵⏟ belongs ∆ ∩ ∆′ and ∆ ∩ ∆′ is closed with 

respect to ∘. 

It is not the same for union ∪, which does not always preserve the closure property. 

Fuzzy groups 

 A group is a monoid such that each element possesses one and only one inverse. 

 We shall show that a necessary condition for (𝑃⏟ (𝐸),∘) to have a group structure is 

that M=[0, 1] also have a group structure for an operation corresponding to  ∘.  We shall see 

that in any case M=[0, 1] may be endowed with a group structure for an operation ∘ to be 

defined. 

 M=[0, 1] is a vector lattice that may be reduced to a single chain forming a total order.  

We consider the operations ⌃(min), ⌄ (max), ∘ (product), ∓ (algebraic sum), ⨁ (disjunctive 

sum).  For each of these operations, one has the associative property and there exists an 

identity, which is, depending on the case 0 or 1; but it is easy to prove, almost in the same 

way, that for each of these operations, there does not exist an inverse for each element.  We 

show this for A.  Consider a pair  

(𝑎, 𝑏) ∈ 𝑀 ×𝑀, 

𝑀 = [0,1] and such that 0 < 𝑎 < 𝑏 < 1.  The identity of ⌃ is 1. 

𝐷𝑜𝑒𝑠 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑡ℎ𝑒𝑛 𝑎𝑛 𝑎 𝑜𝑟 𝑏 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑎⌃𝑏 = 1. 
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𝑇ℎ𝑖𝑠 𝑖𝑠 𝑖𝑚𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑎⌃𝑏 = 𝑎 < 1. 

On the other hand, if one takes 𝑀 = [0,1], one finds that a group is possible. 

 

Figure 47.6 

 Thus, we show in Figure 47.6 that one does not obtain a group for ⌃ or ⌄ (one thus 

does not obtain a group any longer for ∘ and ∓, which in the Boolean case give 

equivalent operations).  On the contrary, one does obtain a group if one takes the 

operation ⨁.  One also obtains a group if one considers the operation ⨁̃ (inverse 

disjunctive sum).  We note that the two groups ∅ and ∅̃ are isomorphic by permitting 0 

and 1; a single group may represent the two. 

 It follows from this that if one considers any one of the operations ∪,∩,∘,∓,⨁  

and M=[0,1], one may not give (𝑃⏟ (𝐸),∘) a group structure. 

         If one takes M=[0,1], it is only with ⨁ (or what amounts to the same thing, with  

⨁̃) that one may form a group.  We consider as an example the ordinary group formed 

thus with E={𝑥1, 𝑥2, 𝑥3} .  
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Figure 47.7 

If one puts 

𝑎𝑏𝑐 = {(𝑥1|𝑎), (𝑥2|𝑏), (𝑥3|𝑐)} 

in order to simplify writing, with  

𝑎, 𝑏, 𝑐 ∈ {0,1}, 

one obtains the group represented in Figure 47.7.  The identity is 000 and each element abc 

has itself for an inverse.  The group   (𝑃⏟ (𝐸),⨁) has been represented in Figure 47.8 by 

replacing the binary numbers abc by their corresponding decimals.   

 

Figure 47.8 
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FUZZY EXTERNAL COMPOSITION 

 Let 𝐸1 and 𝐸2 be two sets.  If to each ordered pair (𝐴1⏟ ,𝐴2⏟) ,𝐴1⏟ ⊂ 𝐸1, 𝐴2⏟ ⊂ 𝐸2, one 

may correspond one and only one  𝐴3⏟ ⊂ 𝐸3, one has a law of fuzzy external composition if  

𝐸3 ≠ 𝐸1 𝑜𝑟 /𝑎𝑛𝑑   𝐸3 ≠ 𝐸2, the law is internal. 

 We shall consider several examples of laws of fuzzy external composition. 

Example 1: 

 We see first a purely discrete example.  Let,  

𝐸1 = {𝐴, 𝐵, 𝐶},        𝑀1 = {0,
1

4
,
1

2
,
3

4
, 1}    ,   𝑐𝑎𝑟𝑑 𝐸1 = 3    , 𝑐𝑎𝑟𝑑 𝑀1 = 5 

𝐸2 = {𝑎, 𝑏, 𝑐, 𝑑},        𝑀2 = {0,
1

2
, 1}    ,   𝑐𝑎𝑟𝑑 𝐸2 = 4    , 𝑐𝑎𝑟𝑑 𝑀2 = 3 

𝐸3 = {𝛼, 𝛽},        𝑀3 = {0,
1

3
,
2

3
, 1}    ,   𝑐𝑎𝑟𝑑 𝐸3 = 2    , 𝑐𝑎𝑟𝑑 𝑀3 = 4. 

 Let 𝐴1⏟ ⊂ 𝐸1 𝑎𝑛𝑑  𝐴2⏟ ⊂ 𝐸2: to each ordered pair such as (𝐴1⏟ , 𝐴2⏟) we correspond one 

and only one 𝐴3⏟ ⊂ 𝐸3 by means of a table.  Thus, let 

𝐴1⏟ = {(𝐴|
1

4
) , (𝐵|

1

2
) , (𝐶|1)}  𝑑𝑒𝑛𝑜𝑡𝑒𝑑 (

1

4
,
1

2
, 1)   

𝐴2⏟ = {(𝑎|0), (𝑏|
1

2
) , (𝑐|0), (𝑑|1)}  𝑑𝑒𝑛𝑜𝑡𝑒𝑑 (0,

1

2
, 0, 1).   

We suppose that the table corresponds to these two fuzzy subsets 

𝐴3⏟ = {(𝛼|
1

3
) , (𝛽|1)}  𝑑𝑒𝑛𝑜𝑡𝑒𝑑 (

1

3
, 1)   

The table will possess 53 × 34 = 125 × 81 cases:  we do not present this, but give a small 

extract in Figure 48.1 

 

Figure 48.1 
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Example 2: 

 We take the same example as above, but with the law,  

𝜇𝐴1⏟(𝛼) =  |𝑦
⋀

𝑥
⋀ 𝜇𝐴1⏟(𝑥)⋁𝜇𝐴2⏟ (𝑦)| , 

𝜇𝐴2⏟ (𝑦) =  |𝑦
⋁

𝑥
⋁ 𝜇𝐴1⏟(𝑥)⋀𝜇𝐴2⏟ (𝑦)|.  

one obtain another composition table from which one goes on to calculate an element 

𝑃⏟ (𝐸1) × 𝑃⏟ (𝐸2).  Let  

𝐴1⏟ = {(𝐴|
1

4
) , (𝐵|

1

2
) , (𝐶|1)}  𝑑𝑒𝑛𝑜𝑡𝑒𝑑 (

1

4
,
1

2
, 1)   

𝐴2⏟ = {(𝑎|0), (𝑏|
1

2
) , (𝑐|0), (𝑑|1)}  𝑑𝑒𝑛𝑜𝑡𝑒𝑑 (0,

1

2
, 0, 1).   

𝜇𝐴3⏟(𝛼) =  |    𝑦
⋀

𝑥
⋀  (

1

4
∨ 0,

1

4
∨
1

2
,
1

4
 ∨ 1),     𝑦

⋀  (
1

2
∨ 0,

1

2
∨
1

2
,
1

2
∨ 0,

1

2
∨ 1),    

  𝑦
⋀  (1 ∨ 0 , 1 ∨

1

2
 , 1 ∨ 0, 1 ∨ 1) |   

=  |    𝑦
⋀

𝑥
⋀  (

1

4
,
1

2
,
1

4
, 1),     𝑦

⋀  (
1

2
,
1

2
,
1

2
, 1) ,   𝑦

⋀  (1 , 1 , 1, 1)|   

=   (
1

4
,
1

2
, 1) =

1

4
.𝑥

⋀  

𝜇𝐴3⏟(𝛽) =  |    𝑦
∨

𝑥
∨  (

1

4
∧ 0,

1

4
∧
1

2
,
1

4
 ∧ 0,

1

4
∧ 1),     𝑦

∨  (
1

2
∧ 0,

1

2
∧
1

2
,
1

2
∧ 0,

1

2
∧ 1),    

  𝑦
∨  (1 ∧ 0 , 1 ∧

1

2
 , 1 ∧ 0, 1 ∧ 1) |   

=  |    𝑦
∨

𝑥
∨  (0,

1

4
, 0,
1

4
),     𝑦

∨  (0,
1

2
, 0,
1

2
) ,   𝑦

∨  (0,
1

2
, 0, 1) |   

= (
1

4
,
1

2
, 1) = 1.  

𝑥

∨

 

Thus, 𝜇𝐴3⏟ (𝛼) =
1

4
 𝑎𝑛𝑑 𝜇𝐴3⏟(𝛽) = 1. 

To  

𝐴1⏟ = (𝐴|
1

4
) , (𝐵|

1

2
) , (𝐶|1)  

and  
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𝐴2⏟ = (𝑎|0), (𝑏|
1

2
) , (𝑐|0), (𝑑|1)  

one corresponds  

𝐴3⏟ = (𝛼|
1

4
) , (𝛽|1). 

Remark : 

 In the general case, let 𝑀1 be associated with 𝐸1; 

𝑀2 be associated with 𝐸2; 

𝑀3 be associated with 𝐸3. 

 If 𝑃⏟ (𝐸3) is formed with respect to 𝑃⏟ (𝐸1) by a law ∘ corresponding to  

𝜇𝐴3⏟ (𝑥, 𝑦) = 𝜇𝐴1⏟(𝑥)⊚ 𝜇𝐴2⏟ (𝑦). 

𝑀3 will be deduced from 𝑀1 𝑎𝑛𝑑 𝑀2 by considering the formula of composition. 

Thus, in the example of  

𝜇𝐴1⏟(𝛼) =  |𝑦
⋀

𝑥
⋀ 𝜇𝐴1⏟(𝑥)⋁𝜇𝐴2⏟ (𝑦)| , 

𝜇𝐴2⏟ (𝑦) =  |𝑦
⋁

𝑥
⋁ 𝜇𝐴1⏟(𝑥)⋀𝜇𝐴2⏟ (𝑦)|,  

it is evident that, 

 𝑀3 = 𝑀1 ∪𝑀2 = 𝑀1 = {0,
1

4
,
1

2
,
3

4
, 1}. 

Example 3: 

 We shall construct a fuzzy graph whose vertices are fuzzy subsets, this will define a 

law of external composition. 

Let 

𝐴⏟ ⊂ 𝐸, 𝐵⏟ ⊂ 𝐸, 

To any ordered pair (𝐴⏟ , 𝐵⏟) ∈ 𝑃⏟ (𝐸) × 𝑃⏟ (𝐸) one will correspond an element denoted 𝐴⏟ ∘

𝐵⏟ = 𝑐(𝐴⏟ ⋅ 𝐵⏟)  

 The element c takes its values in a set Q defined by the operation ∘. 

 Suppose, for example, that 
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𝐸 = {𝑎, 𝑏}𝑎𝑛𝑑 𝑀 = {0,
1

2
, 1}. 

Suppose also that 𝑐 (𝐴⏟ ⋅  𝐵⏟) = [𝜇𝐴⏟(𝑎) ∧ 𝜇𝐵⏟(𝑎)] ∨ [𝜇𝐴⏟(𝑏) ∧ 𝜇𝐵⏟(𝑏)]. 

With such a function, c takes its values in 𝑄 = 𝑀 = {0,
1

2
, 1}. 

We obtain the fuzzy graph given in the figure 48.2. 

 

Fig. 48.2 

 In this fashion one may construct fuzzy graphs that possess particular properties due 

to their construction.  This is a conception of fuzzy graphs for which the elements of vertices 

are fuzzy subsets of the same reference set. 

 It is a matter here of an extension that may have concrete application, for example, if 

∘ corresponds to an evaluation of distance. 

Example 4 :  

Recall Example 3 and suppose now that 𝑐(𝐴⏟ , 𝐵⏟) is the relative generalized Hamming 

distance given by 

𝛿 (𝐴⏟ , 𝐵⏟) =
1

2
(|𝜇𝐴⏟(𝑎) − 𝜇𝐵⏟(𝑎)| + |𝜇𝐴⏟(𝑏) − 𝜇𝐵⏟(𝑏)|). 

This indeed gives a law of external composition.  
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Figure 48.3 

Importance of the notion of a law of external composition of fuzzy subsets 

 This notion is important:  it characterizes any system of evaluation of relations among 

fuzzy subsets of the same reference set, indeed of fuzzy subsets of different reference sets.  

The set in which 𝑃⏟ (𝐸1) × 𝑃⏟ (𝐸2) takes its values may be an ordinary set or more generally a 

set of fuzzy subsets of an ordinary power set (Figure 48.4). 
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 The notion of distance between messages or fuzzy subsets of the same reference set 

gives an example (one of the more trivial examples) concerning this general notion. 

 We remark that the procedures for invention or ingenuity that one calls biassociation 

are procedures essentially based on laws of external composition.  One takes a concept 𝐴⏟, 

which is an ordinary or fuzzy subset of a family of concepts 𝐸1, and another concept 𝐵⏟, 

which is an ordinary or fuzzy subset of another (or eventually the same family.  The 

biassociation of 𝐴⏟ and 𝐵⏟ is an external law ∘ that allows one to obtain a new concept 𝐶⏟, 

which is an ordinary or fuzzy subset of a third family (eventually the same as one of the 

preceding families) (Figure 48.5). 

 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 

𝐴⏟ A C E A A ∅ H 

 

 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 

𝐵⏟ c b e u h 

 

                                       

 𝑧1 𝑧2 𝑧3 𝑧4 𝑧5 𝑧6 𝑧7 𝑧8 

𝐶⏟ 𝑟3 𝑟4 𝑟1 𝑟2 ∅ ∅ 𝑟4 𝑟1 2 

 

Figure 48.5 The phenomenon of biassociation 

 

OPERATIONS ON FUZZY NUMBERS 

 We go on to consider various types of fuzzy numbers. 

Exponential fuzzy integers 

 Consider a reference set 𝐸 = 𝑅°, and the fuzzy subset 𝐼1⏟ such that  

𝜇𝐼1⏟ (𝑥) = 𝜆𝑒
−𝜆𝑥 , 𝑥 ∈ 𝑅°. 

Then define  𝐼2⏟  in the following fashion: 
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𝜇𝐼2⏟ (𝑥) = 𝜇𝐼1⏟ (𝑥) ∘ 𝜇𝐼1⏟ (𝑥) 

= ∫𝜇𝐼1⏟ (𝑡)𝜇𝐼1⏟ (𝑥 − 𝑡)𝑑𝑡

𝑥

0

 

= ∫𝜆𝑒−𝜆𝑡𝜆𝑒−𝜆(𝑥−𝑡)𝑑𝑡

𝑥

0

 

= 𝜆2𝑥𝑒−𝜆𝑥  

Next define  𝐼3⏟  in the following manner : 

𝜇𝐼3⏟ (𝑥) = 𝜇𝐼2⏟ (𝑥) ∘ 𝜇𝐼1⏟ (𝑥) = 𝜇𝐼1⏟ (𝑥) ∘ 𝜇𝐼2⏟ (𝑥) 

= ∫𝜆2𝑡𝑒−𝜆𝑡𝜆𝑒−𝜆(𝑥−𝑡)𝑑𝑡

𝑥

0

 

=
𝜆3𝑥2𝑒−𝜆𝑥

2
. 

and 𝐼𝑛:⏟ 

𝜇𝐼𝑛⏟ (𝑥) = 𝜇𝐼𝑛−1⏟
(𝑥) ∘ 𝜇𝐼1⏟ (𝑥) = 𝜇𝐼1⏟ (𝑥) ∘ 𝜇𝐼𝑛−1⏟

(𝑥) 

=
𝜆𝑛𝑥𝑛−1𝑒−𝜆𝑥

𝑛!
. 

Note that  

𝑀𝐴𝑋
𝑥

𝜇𝐼𝑛⏟ (𝑥) =𝑀𝐴𝑋𝑥
 𝜆𝑛𝑥𝑛−1𝑒−𝜆𝑥

𝑛!

 

=
𝜆(𝑛 − 1)(𝑛−1)𝑒−(𝑛−1)

(𝑛 − 1)!
 

for the value 𝑥 =
𝑛−1

𝜆
. 

 

 

 

Thus one may establish the values in the following table. 

𝐼𝑖⏟ 𝜇𝐼𝑖⏟(𝑥) Abscissa of the 

maximum 

Ordinate of the 

maximum 

𝐼1⏟ 

𝐼2⏟  

𝐼3⏟  

𝜆𝑒−𝜆𝑥  

𝜆2𝑥𝑒−𝜆𝑥  

𝜆3𝑥2𝑒−𝜆𝑥

2
 

𝑥 = 0 

𝑥 =
1

𝜆
 

𝑥 =
2

𝜆
 

𝜆  

𝜆𝑒−1 

𝜆22𝑒−2

2
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........................ 

................ 

............. 

𝐼𝑛⏟  

............. 

.......... 

......... 

......... 

𝜆𝑛𝑥𝑛−1𝑒−𝜆𝑥

𝑛!
 

.......... 

........ 

........ 

........ 

𝑥 =
𝑛 − 1

𝜆
 

......... 

 

........ 

........ 

....... 

𝜆(𝑛 − 1)(𝑛−1)𝑒−(𝑛−1)

(𝑛 − 1)!
 

......... 

The fuzzy subsets 

𝐼1⏟  , 𝐼2⏟ , 𝐼3⏟ , ………𝐼𝑛⏟  ,………. 

will be called exponential fuzzy integers.  𝐼1⏟ will be called exponential fuzzy 1, 𝐼2⏟  will be 

called exponential fuzzy 2 , etc. 

        The operation of composition defined above is associative and commutative.  Thus the 

set of fuzzy subsets  

𝐼1⏟  , 𝐼2⏟ , 𝐼3⏟ , ……… 𝐼𝑛⏟  ,………. 

forms an associative and commutative groupoid. 

Geometric fuzzy integers 

 Consider the reference set  

𝐸 = 𝑁 

and the fuzzy subset 𝐽1⏟  such that  

𝜇𝐽1⏟ (𝑥) = 𝑎(1 − 𝑎)
𝑥−1, 𝑎 ∈ 𝑅°  , 0 < |𝑎| < 1, 𝑥 = 1,2,3,…… 

Then we define 𝐽2⏟  in the following form: 

𝜇𝐽2⏟ (𝑥) = 𝜇𝐽1⏟ (𝑥) ∘ 𝜇𝐽1⏟ (𝑥) 

=∑𝜇𝐽1⏟ (𝑡)𝜇𝐽1⏟ (𝑥 − 𝑡)

𝑥−1

𝑡=1

 

=∑𝑎(1 − 𝑎)𝑡−1𝑎(1 − 𝑎)𝑥−𝑡−1
𝑥−1

𝑡=1

 

= 𝑎2(1 − 𝑎)𝑥−2∑1

𝑥−1

𝑡=1

 

= (𝑥 − 1)𝑎2(1 − 𝑎)𝑥−2, 𝑥 = 2,3,4,……… .. 
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Then 𝐽3⏟  is defined in the following way: 

𝜇𝐽3⏟ (𝑥) = 𝜇𝐽1⏟ (𝑥) ∘ 𝜇𝐽2⏟ (𝑥) = 𝜇𝐽2⏟ (𝑥) ∘ 𝜇𝐽1⏟ (𝑥) 

=∑𝜇𝐽1⏟ (𝑡)𝜇𝐽2⏟ (𝑥 − 𝑡)

𝑥−1

𝑡=2

 

=∑(𝑡 − 1)𝑎2(1 − 𝑎)𝑡−2𝑎(1 − 𝑎)𝑥−𝑡−1
𝑥−1

𝑡=2

 

= 𝑎3(1 − 𝑎)𝑥−3∑(𝑡 − 1)

𝑥−1

𝑡=2

 

=
(𝑥 − 1)(𝑥 − 2)

2
𝑎3(1 − 𝑎)𝑥−3, 𝑥 = 3,4,5, ……… .. 

More generally in the same manner we obtain 

𝜇𝐽𝑟⏟ (𝑥) = 𝐶𝑥−1
𝑥−𝑟  𝑎𝑟(1 − 𝑎)𝑥−𝑟 . 

 The abscissas of the maximums are x=r, r+1, ..... given in the following table. 

 

𝐽𝑖⏟ 𝜇𝐼𝑖⏟(𝑥) Abscissa of the 

maximum 

𝐽1⏟  

𝐽2⏟  

𝐽3⏟  

 

........................ 

................ 

............. 

𝐽𝑟⏟  

............. 

𝑎(1 − 𝑎)𝑥−1 

(𝑥 − 1)𝑎2(1 − 𝑎)𝑥−2 
(𝑥 − 1)(𝑥 − 2)

2
𝑎3(1 − 𝑎)𝑥−3 

 

.......... 

......... 

......... 

𝐶𝑥−1
𝑥−𝑟  𝑎𝑟(1 − 𝑎)𝑥−𝑟 

.......... 

𝑥 = 1 
1

𝑎
≤ 𝑥 ≤ 1 +

1

𝑎
 

2

𝑎
≤ 𝑥 ≤ 1 + 2/𝑎 

........ 

........ 

........ 

𝑛 − 1

𝑎
≤ 𝑥 ≤ 1 +

𝑛 − 1

𝑎
 

 

......... 

 

 

The fuzzy subsets 

𝐽1⏟  , 𝐽2⏟  , 𝐽3⏟  , ………… , 𝐽𝑟⏟ ,……. 

will be called geometric fuzzy integers.  𝐽1⏟will be called geometric fuzzy 1, etc. 

Gaussian fuzzy integers 

 Consider a reference set E=R, 
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and the fuzzy subset 𝐾1⏟ such that  

𝜇𝐾1⏟ (𝑥) =
1

√2𝜋𝜎1
2 
𝑒
−
(𝑥−1)2

2𝜎1
2  

𝜇𝐾2⏟ (𝑥) = 𝜇𝐾1⏟ (𝑥)°𝜇𝐾1⏟ (𝑥) 

= ∫𝜇𝐾1⏟(𝑡)𝜇𝐾1⏟(𝑥 − 𝑡)𝑑𝑡

𝑥

0

 

=
1

√4𝜋𝜎12 
𝑒
−
(𝑥−2)2

4𝜎1
2  

Continuing we get  

𝜇𝐾𝑟⏟ (𝑥) =
1

√2𝜋𝑟𝜎12 
𝑒
−
(𝑥−𝑟)2

2𝑟𝜎1
2  

 The fuzzy subsets 

𝐾1⏟ ,𝐾2⏟ ,𝐾3⏟ ,………… . , 𝐾𝑟⏟ ,… .. 

will be called Gaussian fuzzy integers. 

CONCLUSION 

Fuzzy logic has been used in numerous applications such as facial pattern recognition, 

air conditioners, washing machines, vacuum cleaners, antiskid braking systems, transmission 

systems, control of subway systems and unmanned helicopters, knowledge-based systems for 

multi objective optimization of power systems, ... 
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